College

Which choice is equivalent to the expression below?

[tex]\sqrt{50} - \sqrt{2}[/tex]

A. 5

B. [tex]24 \sqrt{2}[/tex]

C. [tex]4 \sqrt{2}[/tex]

D. [tex]\sqrt{48}[/tex]

Answer :

We start with the expression:

[tex]$$
\sqrt{50} - \sqrt{2}.
$$[/tex]

Step 1. Recognize that the number 50 can be factored as [tex]$25 \times 2$[/tex]. Using the property of square roots, we have:

[tex]$$
\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}.
$$[/tex]

Step 2. Substitute the simplified form back into the original expression:

[tex]$$
\sqrt{50} - \sqrt{2} = 5\sqrt{2} - \sqrt{2}.
$$[/tex]

Step 3. Factor out the common term [tex]$\sqrt{2}$[/tex]:

[tex]$$
5\sqrt{2} - \sqrt{2} = (5-1)\sqrt{2} = 4\sqrt{2}.
$$[/tex]

Thus, the expression [tex]$\sqrt{50} - \sqrt{2}$[/tex] is equivalent to

[tex]$$
4\sqrt{2}.
$$[/tex]

This corresponds to the choice labeled as [tex]$4\sqrt{2}$[/tex].