Answer :
Sure, let's solve the problem step-by-step!
### Converting the fraction [tex]\(\frac{12}{25}\)[/tex] to a decimal:
1. Divide the numerator by the denominator:
[tex]\[
\frac{12}{25} = 12 \div 25 = 0.48
\][/tex]
So, [tex]\(\frac{12}{25}\)[/tex] as a decimal is [tex]\(0.48\)[/tex].
### Converting the decimal [tex]\(0.48\)[/tex] to a percent:
1. Multiply the decimal by 100 to convert it to a percent:
[tex]\[
0.48 \times 100 = 48
\][/tex]
So, [tex]\(0.48\)[/tex] as a percent is [tex]\(48\%\)[/tex].
Therefore, the correct answer is:
[tex]\[
\text{0.48 and 48%}
\][/tex]
The option that matches this solution is:
[tex]\[
\boxed{0.48 \text{ and } 48\%}
\][/tex]
### Converting the fraction [tex]\(\frac{12}{25}\)[/tex] to a decimal:
1. Divide the numerator by the denominator:
[tex]\[
\frac{12}{25} = 12 \div 25 = 0.48
\][/tex]
So, [tex]\(\frac{12}{25}\)[/tex] as a decimal is [tex]\(0.48\)[/tex].
### Converting the decimal [tex]\(0.48\)[/tex] to a percent:
1. Multiply the decimal by 100 to convert it to a percent:
[tex]\[
0.48 \times 100 = 48
\][/tex]
So, [tex]\(0.48\)[/tex] as a percent is [tex]\(48\%\)[/tex].
Therefore, the correct answer is:
[tex]\[
\text{0.48 and 48%}
\][/tex]
The option that matches this solution is:
[tex]\[
\boxed{0.48 \text{ and } 48\%}
\][/tex]