Answer :
Sure! Let's go through each item step by step to convert these fractions and mixed numbers into percentages and solve a related question about fractions.
1. Convert Fraction to Percent:
a. [tex]\(\frac{6 \times 4}{25}\)[/tex]
- Calculate [tex]\(6 \times 4 = 24\)[/tex].
- This gives us [tex]\(\frac{24}{25}\)[/tex].
- To convert to percent: [tex]\(\frac{24}{25} \times 100 = 96\%\)[/tex].
b. [tex]\(\frac{3}{20}\)[/tex]
- Convert to percent: [tex]\(\frac{3}{20} \times 100 = 15\%\)[/tex].
c. [tex]\(\frac{7}{10}\)[/tex]
- Convert to percent: [tex]\(\frac{7}{10} \times 100 = 70\%\)[/tex].
d. [tex]\(\frac{3}{4}\)[/tex]
- Convert to percent: [tex]\(\frac{3}{4} \times 100 = 75\%\)[/tex].
e. [tex]\(\frac{9}{50}\)[/tex]
- Convert to percent: [tex]\(\frac{9}{50} \times 100 = 18\%\)[/tex].
f. [tex]\(\frac{12}{25}\)[/tex]
- Convert to percent: [tex]\(\frac{12}{25} \times 100 = 48\%\)[/tex].
2. Convert Mixed Number to Percent:
a. [tex]\(1 \frac{3}{5}\)[/tex]
- Convert to improper fraction: [tex]\(1 \times 5 + 3 = 8\)[/tex], so [tex]\(\frac{8}{5}\)[/tex].
- Convert to percent: [tex]\(\frac{8}{5} \times 100 = 160\%\)[/tex].
b. [tex]\(2 \frac{4}{25}\)[/tex]
- Convert to improper fraction: [tex]\(2 \times 25 + 4 = 54\)[/tex], so [tex]\(\frac{54}{25}\)[/tex].
- Convert to percent: [tex]\(\frac{54}{25} \times 100 = 216\%\)[/tex].
3. Fraction of Students Walking to School:
- 25% of the students walk to school. To find the fraction, we can express 25% as a fraction of 100: [tex]\(\frac{25}{100}\)[/tex].
- Simplifying this fraction gives [tex]\(\frac{1}{4}\)[/tex].
Thus, the answers to the questions are as follows:
- [tex]\((6 \times 4) / 25\)[/tex] is 96%
- [tex]\(\frac{3}{20}\)[/tex] is 15%
- [tex]\(\frac{7}{10}\)[/tex] is 70%
- [tex]\(\frac{3}{4}\)[/tex] is 75%
- [tex]\(\frac{9}{50}\)[/tex] is 18%
- [tex]\(\frac{12}{25}\)[/tex] is 48%
- [tex]\(1 \frac{3}{5}\)[/tex] is 160%
- [tex]\(2 \frac{4}{25}\)[/tex] is 216%
- The fraction of students who walk to school is [tex]\(\frac{1}{4}\)[/tex].
1. Convert Fraction to Percent:
a. [tex]\(\frac{6 \times 4}{25}\)[/tex]
- Calculate [tex]\(6 \times 4 = 24\)[/tex].
- This gives us [tex]\(\frac{24}{25}\)[/tex].
- To convert to percent: [tex]\(\frac{24}{25} \times 100 = 96\%\)[/tex].
b. [tex]\(\frac{3}{20}\)[/tex]
- Convert to percent: [tex]\(\frac{3}{20} \times 100 = 15\%\)[/tex].
c. [tex]\(\frac{7}{10}\)[/tex]
- Convert to percent: [tex]\(\frac{7}{10} \times 100 = 70\%\)[/tex].
d. [tex]\(\frac{3}{4}\)[/tex]
- Convert to percent: [tex]\(\frac{3}{4} \times 100 = 75\%\)[/tex].
e. [tex]\(\frac{9}{50}\)[/tex]
- Convert to percent: [tex]\(\frac{9}{50} \times 100 = 18\%\)[/tex].
f. [tex]\(\frac{12}{25}\)[/tex]
- Convert to percent: [tex]\(\frac{12}{25} \times 100 = 48\%\)[/tex].
2. Convert Mixed Number to Percent:
a. [tex]\(1 \frac{3}{5}\)[/tex]
- Convert to improper fraction: [tex]\(1 \times 5 + 3 = 8\)[/tex], so [tex]\(\frac{8}{5}\)[/tex].
- Convert to percent: [tex]\(\frac{8}{5} \times 100 = 160\%\)[/tex].
b. [tex]\(2 \frac{4}{25}\)[/tex]
- Convert to improper fraction: [tex]\(2 \times 25 + 4 = 54\)[/tex], so [tex]\(\frac{54}{25}\)[/tex].
- Convert to percent: [tex]\(\frac{54}{25} \times 100 = 216\%\)[/tex].
3. Fraction of Students Walking to School:
- 25% of the students walk to school. To find the fraction, we can express 25% as a fraction of 100: [tex]\(\frac{25}{100}\)[/tex].
- Simplifying this fraction gives [tex]\(\frac{1}{4}\)[/tex].
Thus, the answers to the questions are as follows:
- [tex]\((6 \times 4) / 25\)[/tex] is 96%
- [tex]\(\frac{3}{20}\)[/tex] is 15%
- [tex]\(\frac{7}{10}\)[/tex] is 70%
- [tex]\(\frac{3}{4}\)[/tex] is 75%
- [tex]\(\frac{9}{50}\)[/tex] is 18%
- [tex]\(\frac{12}{25}\)[/tex] is 48%
- [tex]\(1 \frac{3}{5}\)[/tex] is 160%
- [tex]\(2 \frac{4}{25}\)[/tex] is 216%
- The fraction of students who walk to school is [tex]\(\frac{1}{4}\)[/tex].