Answer :
Let's solve and simplify each given expression and equation step-by-step:
(c) $5^{x+1} = 125$
To solve for [tex]x[/tex]:
- Recognize that $125[tex]can be expressed as a power of $5[/tex]: $125 = 5^3$.
- The equation becomes $5^{x+1} = 5^3$.
- Since the bases are the same, set the exponents equal: [tex]x + 1 = 3[/tex].
- Solve for [tex]x[/tex]:
[tex]x = 3 - 1 = 2[/tex]
(d) [tex]\frac{27^{\frac{2}{3}} \times 64^{\frac{1}{2}}}{32^{\frac{2}{3}}}[/tex]
- Simplify each part:
- $27 = 3^3[tex], so $27^{\frac{2}{3}} = (3^3)^{\frac{2}{3}} = 3^{2} = 9[/tex].
- $64 = 2^6[tex], so $64^{\frac{1}{2}} = (2^6)^{\frac{1}{2}} = 2^3 = 8[/tex].
- $32 = 2^5[tex], so $32^{\frac{2}{3}} = (2^5)^{\frac{2}{3}} = 2^{\frac{10}{3}}[/tex].
- Substitute back:
[tex]\frac{9 \times 8}{2^{\frac{10}{3}}}[/tex] = [tex]\frac{72}{2^{\frac{10}{3}}}[/tex] - Simplify:
- $72 = 2^3 \times 9$.
- So, cancel out factors of 2 to further simplify the expression.
(e) $8^{\frac{1}{3}} \times 81^{\frac{1}{4}} \times 32^{\frac{1}{5}}$
- Simplify each part:
- $8 = 2^3[tex], so $8^{\frac{1}{3}} = 2^{(3 \times \frac{1}{3})} = 2^{1} = 2[/tex].
- $81 = 3^4[tex], so $81^{\frac{1}{4}} = 3^{(4 \times \frac{1}{4})} = 3^{1} = 3[/tex].
- $32 = 2^5[tex], so $32^{\frac{1}{5}} = 2^{(5 \times \frac{1}{5})} = 2^{1} = 2[/tex].
- Combine:
[tex]2 \times 3 \times 2 = 12[/tex]
(a) $3\sqrt{28} - 5\sqrt{63} + 4\sqrt{112}$
- Simplify each square root:
- [tex]\sqrt{28} = \sqrt{4 \times 7} = 2\sqrt{7}[/tex].
- [tex]\sqrt{63} = \sqrt{9 \times 7} = 3\sqrt{7}[/tex].
- [tex]\sqrt{112} = \sqrt{16 \times 7} = 4\sqrt{7}[/tex].
- Substitute back:
[tex]3(2\sqrt{7}) - 5(3\sqrt{7}) + 4(4\sqrt{7})[/tex] - Combine like terms:
[tex]6\sqrt{7} - 15\sqrt{7} + 16\sqrt{7} = 7\sqrt{7}[/tex]
(b) [tex]\frac{3\sqrt{8} \times 5\sqrt{5} \times \sqrt{7}}{\sqrt{42} \times 2\sqrt{3} \times \sqrt{15}}[/tex]
- Simplify:
- [tex]\sqrt{8} = 2\sqrt{2}[/tex], [tex]\sqrt{42} = \sqrt{6 \times 7}[/tex], [tex]\sqrt{15} = \sqrt{3 \times 5}[/tex].
- Substitute & Reduce:
- Numerator: $3 \times 2\sqrt{2} \times 5\sqrt{5} \times \sqrt{7}[tex]= $30\sqrt{70}[/tex]
- Denominator simplifies to $6\sqrt{35}$.
- Simplify:
[tex]\frac{30\sqrt{70}}{6\sqrt{35}} = 5\sqrt{2}[/tex]
(c) [tex]\frac{2}{2\sqrt{3} - \sqrt{7}}[/tex]
- Multiply by the conjugate:
- [tex](2\sqrt{3} + \sqrt{7})/(2\sqrt{3} + \sqrt{7})[/tex]
- Depth:
- Numerator: $2(2\sqrt{3} + \sqrt{7}) = 4\sqrt{3} + 2\sqrt{7}$
- Denominator: [tex](2\sqrt{3})^2 - (\sqrt{7})^2 = 12 - 7 = 5[/tex]
- Result: [tex]\frac{4\sqrt{3} + 2\sqrt{7}}{5}[/tex]
(d) [tex]\frac{2\sqrt{3} - \sqrt{5}}{2\sqrt{3} + \sqrt{5}}[/tex]
- Multiply by the conjugate:
- Numerator becomes $4 \times 3 - 5 = 12 - 5 = 7$
- Simplify:
[tex]\frac{(2\sqrt{3} - \sqrt{5})(2\sqrt{3} - \sqrt{5})}{7} = -1[/tex]
(e) [tex]\log_5 0.04[/tex]
- Express $0.04[tex]as a fraction of the form $5^x[/tex]
$0.04 = \frac{4}{100} = \frac{5^{-2}}{5^2}$ - Simplify to get the result for [tex]\log_5 0.04[/tex]
$$x = -2\log_5{5} = -2"
Each step should help understand both the resolution and the simplification processes of the given problems.