Answer :
Sure! Let's go through the process of adding the given decimals step by step:
### Exercise 7.1
#### Addition of Decimals
(a) [tex]\(5.65 + 1.35\)[/tex]
Adding these two numbers, we get:
[tex]\[ 5.65 + 1.35 = 7.0 \][/tex]
(b) [tex]\(49.32 + 14.95\)[/tex]
Adding these two numbers, we get:
[tex]\[ 49.32 + 14.95 = 64.27 \][/tex]
(c) [tex]\(76.39 + 43.78\)[/tex]
Adding these two numbers, we get:
[tex]\[ 76.39 + 43.78 = 120.17 \][/tex]
(d) [tex]\(14.75 + 3.48\)[/tex]
Adding these two numbers, we get:
[tex]\[ 14.75 + 3.48 = 18.23 \][/tex]
(e) [tex]\(3.25 + 0.075 + 5\)[/tex]
Adding these three numbers, we get:
[tex]\[ 3.25 + 0.075 + 5 = 8.325 \][/tex]
(f) [tex]\(425.11 + 390.92 + 797\)[/tex]
Adding these three numbers, we get:
[tex]\[ 425.11 + 390.92 + 797 = 1613.03 \][/tex]
(g) [tex]\(81.67 + 25.29 + 74.44\)[/tex]
Adding these three numbers, we get:
[tex]\[ 81.67 + 25.29 + 74.44 = 181.4 \][/tex]
(h) [tex]\(70.93 + 47.14 + 33.54\)[/tex]
Adding these three numbers, we get:
[tex]\[ 70.93 + 47.14 + 33.54 = 151.61 \][/tex]
(i) [tex]\(25.5 + 95.2 + 41.3\)[/tex]
Adding these three numbers, we get:
[tex]\[ 25.5 + 95.2 + 41.3 = 162.0 \][/tex]
(j) [tex]\(16.3 + 46.5 + 83.6\)[/tex]
Adding these three numbers, we get:
[tex]\[ 16.3 + 46.5 + 83.6 = 146.4 (Due to floating point arithmetic in programming, the exact representation might slightly differ, but it rounds to 146.4) \][/tex]
So, here are the final results for the additions:
[tex]\[
\begin{align*}
(a) & \; 7.0 \\
(b) & \; 64.27 \\
(c) & \; 120.17 \\
(d) & \; 18.23 \\
(e) & \; 8.325 \\
(f) & \; 1613.03 \\
(g) & \; 181.4 \\
(h) & \; 151.61 \\
(i) & \; 162.0 \\
(j) & \; 146.4 \\
\end{align*}
\][/tex]
### Exercise 7.1
#### Addition of Decimals
(a) [tex]\(5.65 + 1.35\)[/tex]
Adding these two numbers, we get:
[tex]\[ 5.65 + 1.35 = 7.0 \][/tex]
(b) [tex]\(49.32 + 14.95\)[/tex]
Adding these two numbers, we get:
[tex]\[ 49.32 + 14.95 = 64.27 \][/tex]
(c) [tex]\(76.39 + 43.78\)[/tex]
Adding these two numbers, we get:
[tex]\[ 76.39 + 43.78 = 120.17 \][/tex]
(d) [tex]\(14.75 + 3.48\)[/tex]
Adding these two numbers, we get:
[tex]\[ 14.75 + 3.48 = 18.23 \][/tex]
(e) [tex]\(3.25 + 0.075 + 5\)[/tex]
Adding these three numbers, we get:
[tex]\[ 3.25 + 0.075 + 5 = 8.325 \][/tex]
(f) [tex]\(425.11 + 390.92 + 797\)[/tex]
Adding these three numbers, we get:
[tex]\[ 425.11 + 390.92 + 797 = 1613.03 \][/tex]
(g) [tex]\(81.67 + 25.29 + 74.44\)[/tex]
Adding these three numbers, we get:
[tex]\[ 81.67 + 25.29 + 74.44 = 181.4 \][/tex]
(h) [tex]\(70.93 + 47.14 + 33.54\)[/tex]
Adding these three numbers, we get:
[tex]\[ 70.93 + 47.14 + 33.54 = 151.61 \][/tex]
(i) [tex]\(25.5 + 95.2 + 41.3\)[/tex]
Adding these three numbers, we get:
[tex]\[ 25.5 + 95.2 + 41.3 = 162.0 \][/tex]
(j) [tex]\(16.3 + 46.5 + 83.6\)[/tex]
Adding these three numbers, we get:
[tex]\[ 16.3 + 46.5 + 83.6 = 146.4 (Due to floating point arithmetic in programming, the exact representation might slightly differ, but it rounds to 146.4) \][/tex]
So, here are the final results for the additions:
[tex]\[
\begin{align*}
(a) & \; 7.0 \\
(b) & \; 64.27 \\
(c) & \; 120.17 \\
(d) & \; 18.23 \\
(e) & \; 8.325 \\
(f) & \; 1613.03 \\
(g) & \; 181.4 \\
(h) & \; 151.61 \\
(i) & \; 162.0 \\
(j) & \; 146.4 \\
\end{align*}
\][/tex]