College

For one month, Sera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F) = \frac{5}{9}(F - 32)[/tex].

What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]F[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

Let's go through the question step-by-step.

The problem is about converting temperatures from degrees Fahrenheit to degrees Celsius using the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].

Now, let's break down what each part of the function represents:

- The function [tex]\( C(F) \)[/tex] is used to convert a temperature given in Fahrenheit, denoted by [tex]\( F \)[/tex], to Celsius.

- [tex]\( C(F) \)[/tex] essentially represents the result you get when you input a temperature in Fahrenheit into the function. This result is the temperature in degrees Celsius.

Therefore, [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.

So, the correct interpretation of what [tex]\( C(F) \)[/tex] represents is:

C(F) represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.