Answer :
Let's go through the question step-by-step.
The problem is about converting temperatures from degrees Fahrenheit to degrees Celsius using the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].
Now, let's break down what each part of the function represents:
- The function [tex]\( C(F) \)[/tex] is used to convert a temperature given in Fahrenheit, denoted by [tex]\( F \)[/tex], to Celsius.
- [tex]\( C(F) \)[/tex] essentially represents the result you get when you input a temperature in Fahrenheit into the function. This result is the temperature in degrees Celsius.
Therefore, [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
So, the correct interpretation of what [tex]\( C(F) \)[/tex] represents is:
C(F) represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
The problem is about converting temperatures from degrees Fahrenheit to degrees Celsius using the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].
Now, let's break down what each part of the function represents:
- The function [tex]\( C(F) \)[/tex] is used to convert a temperature given in Fahrenheit, denoted by [tex]\( F \)[/tex], to Celsius.
- [tex]\( C(F) \)[/tex] essentially represents the result you get when you input a temperature in Fahrenheit into the function. This result is the temperature in degrees Celsius.
Therefore, [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
So, the correct interpretation of what [tex]\( C(F) \)[/tex] represents is:
C(F) represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.