College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F)=\frac{5}{9}(F-32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

To solve the question about what [tex]$C(F)$[/tex] represents, let's break down the information provided:

1. Understand the function [tex]$C(F)$[/tex]:
- The function given is [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].
- This function is used to convert temperatures from degrees Fahrenheit (F) to degrees Celsius (C).

2. Identify what [tex]$C(F)$[/tex] represents:
- [tex]$C(F)$[/tex] is the result (or output) of applying this conversion formula to a temperature value in degrees Fahrenheit, which is given as input [tex]\( F \)[/tex].

3. Interpretation of [tex]$C(F)$[/tex] in the context:
- Since [tex]$C(F)$[/tex] gives the corresponding temperature in degrees Celsius after converting a temperature [tex]\( F \)[/tex] from degrees Fahrenheit, [tex]$C(F)$[/tex] represents the temperature in degrees Celsius.

4. Matching with the given options:
- The correct interpretation from the given choices would be: "[tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit."

Therefore, this interpretation aligns with the first option in the question choices.