College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F) = \frac{5}{9}(F - 32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

To find what [tex]\( C(F) \)[/tex] represents, we need to understand the function [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex].

1. Function Overview: The function [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex] is used to convert a temperature from degrees Fahrenheit (F) to degrees Celsius (C).

2. Understanding the Formula:
- [tex]\( F \)[/tex] is the input to the function, representing temperature in degrees Fahrenheit.
- [tex]\( C(F) \)[/tex] is the output of the function, which will be the equivalent temperature in degrees Celsius.

3. Conversion Explanation:
- The formula subtracts 32 from the Fahrenheit temperature because 32 degrees Fahrenheit is the freezing point of water, which corresponds to 0 degrees Celsius.
- It then multiplies the result by [tex]\(\frac{5}{9}\)[/tex] to convert the temperature from a Fahrenheit-based scale to a Celsius-based scale. This is because each degree Fahrenheit is equivalent to [tex]\(\frac{5}{9}\)[/tex] of a degree Celsius.

4. Terminology and Representation:
- Since [tex]\( C(F) \)[/tex] is the result when you input Fahrenheit into the function, and it gives you the temperature in Celsius, [tex]\( C(F) \)[/tex] represents the output in degrees Celsius for a given input in degrees Fahrenheit.

Therefore, the correct representation of [tex]\( C(F) \)[/tex] is:

"C(F) represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit."