Answer :
Sure, let's tackle the equation step by step.
Equation: [tex]\(4|x+5| + 8 = 24\)[/tex]
### Step 1: Isolate the absolute value term.
Subtract 8 from both sides of the equation:
[tex]\[ 4|x+5| + 8 - 8 = 24 - 8 \][/tex]
Which simplifies to:
[tex]\[ 4|x+5| = 16 \][/tex]
### Step 2: Solve for [tex]\( |x+5| \)[/tex].
Divide both sides of the equation by 4:
[tex]\[ \frac{4|x+5|}{4} = \frac{16}{4} \][/tex]
This simplifies to:
[tex]\[ |x+5| = 4 \][/tex]
### Step 3: Break it down into two separate linear equations.
The absolute value equation [tex]\( |x+5| = 4 \)[/tex] can be split into two equations:
1. [tex]\( x + 5 = 4 \)[/tex]
2. [tex]\( x + 5 = -4 \)[/tex]
### Step 4: Solve each equation separately.
For the first equation [tex]\( x + 5 = 4 \)[/tex]:
[tex]\[ x = 4 - 5 \][/tex]
[tex]\[ x = -1 \][/tex]
For the second equation [tex]\( x + 5 = -4 \)[/tex]:
[tex]\[ x = -4 - 5 \][/tex]
[tex]\[ x = -9 \][/tex]
### Step 5: Conclusion
The solutions to [tex]\( 4|x+5| + 8 = 24 \)[/tex] are:
[tex]\[ x = -1 \text{ and } x = -9 \][/tex]
### Step 6: Match the solutions with the given choices.
- A. [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex] (not correct)
- B. [tex]\( x = 1 \)[/tex] and [tex]\( x = \, ? \)[/tex] (incomplete)
- C. [tex]\( x = -1 \)[/tex] and [tex]\( x = 9 \)[/tex] (not correct)
- D. [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex] (correct)
The correct answer is:
[tex]\[ \boxed{D} \][/tex]
Equation: [tex]\(4|x+5| + 8 = 24\)[/tex]
### Step 1: Isolate the absolute value term.
Subtract 8 from both sides of the equation:
[tex]\[ 4|x+5| + 8 - 8 = 24 - 8 \][/tex]
Which simplifies to:
[tex]\[ 4|x+5| = 16 \][/tex]
### Step 2: Solve for [tex]\( |x+5| \)[/tex].
Divide both sides of the equation by 4:
[tex]\[ \frac{4|x+5|}{4} = \frac{16}{4} \][/tex]
This simplifies to:
[tex]\[ |x+5| = 4 \][/tex]
### Step 3: Break it down into two separate linear equations.
The absolute value equation [tex]\( |x+5| = 4 \)[/tex] can be split into two equations:
1. [tex]\( x + 5 = 4 \)[/tex]
2. [tex]\( x + 5 = -4 \)[/tex]
### Step 4: Solve each equation separately.
For the first equation [tex]\( x + 5 = 4 \)[/tex]:
[tex]\[ x = 4 - 5 \][/tex]
[tex]\[ x = -1 \][/tex]
For the second equation [tex]\( x + 5 = -4 \)[/tex]:
[tex]\[ x = -4 - 5 \][/tex]
[tex]\[ x = -9 \][/tex]
### Step 5: Conclusion
The solutions to [tex]\( 4|x+5| + 8 = 24 \)[/tex] are:
[tex]\[ x = -1 \text{ and } x = -9 \][/tex]
### Step 6: Match the solutions with the given choices.
- A. [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex] (not correct)
- B. [tex]\( x = 1 \)[/tex] and [tex]\( x = \, ? \)[/tex] (incomplete)
- C. [tex]\( x = -1 \)[/tex] and [tex]\( x = 9 \)[/tex] (not correct)
- D. [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex] (correct)
The correct answer is:
[tex]\[ \boxed{D} \][/tex]