Answer :
To understand what [tex]\( C(F) \)[/tex] represents in the given context, let's look at the function given:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
This function is used to convert temperatures from degrees Fahrenheit to degrees Celsius. Here’s what each part represents:
1. The Input [tex]\( F \)[/tex]: This is the temperature in degrees Fahrenheit that you want to convert to degrees Celsius.
2. The Formula [tex]\(\frac{5}{9}(F - 32)\)[/tex]: This is the conversion formula that translates the Fahrenheit temperature into Celsius. The process involves subtracting 32 from the Fahrenheit value, then multiplying the result by [tex]\(\frac{5}{9}\)[/tex].
3. The Output [tex]\( C(F) \)[/tex]: This is the result of the conversion process. It gives you the temperature in degrees Celsius after applying the formula to the Fahrenheit input.
Therefore, [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit. This matches the correct interpretation of the function and the intended conversion process.
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
This function is used to convert temperatures from degrees Fahrenheit to degrees Celsius. Here’s what each part represents:
1. The Input [tex]\( F \)[/tex]: This is the temperature in degrees Fahrenheit that you want to convert to degrees Celsius.
2. The Formula [tex]\(\frac{5}{9}(F - 32)\)[/tex]: This is the conversion formula that translates the Fahrenheit temperature into Celsius. The process involves subtracting 32 from the Fahrenheit value, then multiplying the result by [tex]\(\frac{5}{9}\)[/tex].
3. The Output [tex]\( C(F) \)[/tex]: This is the result of the conversion process. It gives you the temperature in degrees Celsius after applying the formula to the Fahrenheit input.
Therefore, [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit. This matches the correct interpretation of the function and the intended conversion process.