High School

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F) = \frac{5}{9}(F - 32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

To solve this question, we need to understand what [tex]$C(F)$[/tex] represents when using the conversion function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex]. This function is used to convert temperatures from Fahrenheit to Celsius.

- Step 1: Identify what [tex]$F$[/tex] represents.
- In the function, [tex]$F$[/tex] is the input, which stands for the temperature in degrees Fahrenheit.

- Step 2: Understand the formula [tex]$C(F)=\frac{5}{9}(F-32)$[/tex].
- The formula is designed to convert the temperature from Fahrenheit ([tex]$F$[/tex]) to Celsius. It does this by subtracting 32 from the Fahrenheit temperature, then multiplying the result by [tex]$\frac{5}{9}$[/tex].

- Step 3: Determine what [tex]$C(F)$[/tex] represents.
- [tex]$C(F)$[/tex] is the output of the function after calculating using the formula. Since the formula converts Fahrenheit to Celsius, [tex]$C(F)$[/tex] is the temperature in degrees Celsius.

Conclusively, [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit. Therefore, the correct choice is:

[tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.