College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F) = \frac{5}{9}(F - 32)[/tex].

What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

Sure! To solve this problem, we need to understand what the function [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex] represents.

1. Identify the Function:
- The function [tex]\( C(F) \)[/tex] is given, where [tex]\( C \)[/tex] represents Celsius and [tex]\( F \)[/tex] represents Fahrenheit. Specifically, this formula is used to convert temperatures from Fahrenheit to Celsius.

2. Understanding the Formula:
- The formula [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex] is a standard conversion formula used to find out what a temperature in Fahrenheit would be when converted to Celsius. Here, [tex]\( F \)[/tex] is the temperature in Fahrenheit that you plug into the function.

3. Determine What [tex]\( C(F) \)[/tex] Represents:
- When you use this function, you input a temperature in Fahrenheit (denoted as [tex]\( F \)[/tex]).
- The output of the function [tex]\( C(F) \)[/tex] gives you the temperature in Celsius.

4. Conclusion:
- Based on the above explanation, the correct description for [tex]\( C(F) \)[/tex] is:
- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.

Therefore, the statement that correctly describes [tex]\( C(F) \)[/tex] is:
- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.