College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex].

What does [tex]$C(F)$[/tex] represent?

A. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

B. [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Fahrenheit when the input [tex]$C$[/tex] is in degrees Celsius.

C. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Fahrenheit when the input [tex]$F$[/tex] is in degrees Celsius.

D. [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Celsius when the input [tex]$C$[/tex] is in degrees Fahrenheit.

Answer :

To solve the question of what [tex]$C(F)$[/tex] represents, we need to carefully analyze the given function.

The function is defined as:

[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]

Let's break it down:

1. Understanding the Function:
- The function [tex]$C(F)$[/tex] is used to convert temperatures from degrees Fahrenheit (denoted as [tex]$F$[/tex]) to degrees Celsius (denoted as [tex]$C$[/tex]).
- Here, [tex]$C(F)$[/tex] is the notation for the output of the function, indicating the temperature in Celsius as a result of the calculation.

2. Explanation of the Formula:
- The formula [tex]$\frac{5}{9}(F - 32)$[/tex] is the standard conversion formula from Fahrenheit to Celsius.
- It takes the Fahrenheit temperature, subtracts 32, and then multiplies by [tex]$\frac{5}{9}$[/tex] to get the temperature in Celsius.

3. Analyzing the Options:
- The correct interpretation should recognize that [tex]$C(F)$[/tex] is the temperature in Celsius.
- The input [tex]$F$[/tex] represents the temperature in Fahrenheit.

4. Conclusion:
- Therefore, [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

Based on this breakdown, the correct option is:

[tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.