College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F)=\frac{5}{9}(F-32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

Sure! Let's go through what the function [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex] means and what [tex]\( C(F) \)[/tex] represents:

1. Understanding the function:
This function is used to convert a temperature from degrees Fahrenheit to degrees Celsius. In this equation:
- [tex]\( F \)[/tex] stands for the temperature in degrees Fahrenheit that you want to convert.
- [tex]\( C(F) \)[/tex] is the result, which will give you the temperature in degrees Celsius.

2. Analyzing what [tex]\( C(F) \)[/tex] represents:
When you input a temperature in degrees Fahrenheit ([tex]\( F \)[/tex]) into this function, it calculates and outputs the equivalent temperature in degrees Celsius.

3. Matching with the given options:
- The first option says, " [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit." This perfectly describes our scenario: you input [tex]\( F \)[/tex] (Fahrenheit), and the function outputs [tex]\( C \)[/tex] (Celsius).
- The other options mix up units or functions, and do not describe the process of this conversion accurately.

Therefore, the correct answer is that [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.