For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex].

What does [tex]$C(F)$[/tex] represent?

A. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

B. [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Fahrenheit when the input [tex]$C$[/tex] is in degrees Celsius.

C. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Fahrenheit when the input [tex]$F$[/tex] is in degrees Celsius.

D. [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Celsius when the input [tex]$C$[/tex] is in degrees Fahrenheit.

Answer :

To determine what [tex]\( C(F) \)[/tex] represents in the given function, let's understand the provided equation:

[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]

This equation is used to convert temperatures from degrees Fahrenheit (F) to degrees Celsius (C). Here is a breakdown of what each part represents:

1. Function Purpose:
- The function [tex]\( C(F) \)[/tex] is designed to take a temperature [tex]\( F \)[/tex] in degrees Fahrenheit as input.
- It then applies the formula [tex]\(\frac{5}{9}(F - 32)\)[/tex] to convert this temperature to degrees Celsius.

2. Output Explanation:
- The output of the function [tex]\( C(F) \)[/tex] is the equivalent temperature in degrees Celsius.

Given these details, we can correctly interpret the function:

- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.

Therefore, the first option is the accurate interpretation of what [tex]\( C(F) \)[/tex] represents.