Answer :
To determine what [tex]\( C(F) \)[/tex] represents in the given function, let's understand the provided equation:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
This equation is used to convert temperatures from degrees Fahrenheit (F) to degrees Celsius (C). Here is a breakdown of what each part represents:
1. Function Purpose:
- The function [tex]\( C(F) \)[/tex] is designed to take a temperature [tex]\( F \)[/tex] in degrees Fahrenheit as input.
- It then applies the formula [tex]\(\frac{5}{9}(F - 32)\)[/tex] to convert this temperature to degrees Celsius.
2. Output Explanation:
- The output of the function [tex]\( C(F) \)[/tex] is the equivalent temperature in degrees Celsius.
Given these details, we can correctly interpret the function:
- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
Therefore, the first option is the accurate interpretation of what [tex]\( C(F) \)[/tex] represents.
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
This equation is used to convert temperatures from degrees Fahrenheit (F) to degrees Celsius (C). Here is a breakdown of what each part represents:
1. Function Purpose:
- The function [tex]\( C(F) \)[/tex] is designed to take a temperature [tex]\( F \)[/tex] in degrees Fahrenheit as input.
- It then applies the formula [tex]\(\frac{5}{9}(F - 32)\)[/tex] to convert this temperature to degrees Celsius.
2. Output Explanation:
- The output of the function [tex]\( C(F) \)[/tex] is the equivalent temperature in degrees Celsius.
Given these details, we can correctly interpret the function:
- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
Therefore, the first option is the accurate interpretation of what [tex]\( C(F) \)[/tex] represents.