College

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]$76.1^{\circ}$[/tex]. He plans to use the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex][tex]$C(76.1)$[/tex][/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius

B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit

C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius

D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit

Answer :

To solve the problem, we want to understand what [tex]$C(76.1)$[/tex] represents.

The function given is [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex]. This is the formula used to convert a temperature from degrees Fahrenheit ([tex]\( F \)[/tex]) to degrees Celsius ([tex]\( C \)[/tex]).

1. Substitute the given temperature:
- We have [tex]\( F = 76.1 \)[/tex]. So we substitute this value into the function:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]

2. Calculate the result:
- First, perform the subtraction inside the parentheses:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
- Next, multiply 44.1 by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1 = 24.5
\][/tex]

Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius, which is approximately 24.5 degrees Celsius.

The correct choice from the provided options is:

- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius