Answer :
To solve the problem, we want to understand what [tex]$C(76.1)$[/tex] represents.
The function given is [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex]. This is the formula used to convert a temperature from degrees Fahrenheit ([tex]\( F \)[/tex]) to degrees Celsius ([tex]\( C \)[/tex]).
1. Substitute the given temperature:
- We have [tex]\( F = 76.1 \)[/tex]. So we substitute this value into the function:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]
2. Calculate the result:
- First, perform the subtraction inside the parentheses:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
- Next, multiply 44.1 by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1 = 24.5
\][/tex]
Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius, which is approximately 24.5 degrees Celsius.
The correct choice from the provided options is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius
The function given is [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex]. This is the formula used to convert a temperature from degrees Fahrenheit ([tex]\( F \)[/tex]) to degrees Celsius ([tex]\( C \)[/tex]).
1. Substitute the given temperature:
- We have [tex]\( F = 76.1 \)[/tex]. So we substitute this value into the function:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]
2. Calculate the result:
- First, perform the subtraction inside the parentheses:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
- Next, multiply 44.1 by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1 = 24.5
\][/tex]
Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius, which is approximately 24.5 degrees Celsius.
The correct choice from the provided options is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius