College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F) = \frac{5}{9}(F - 32)[/tex].

What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

To solve the question of what [tex]\( C(F) \)[/tex] represents, let's examine the function used to convert temperatures from degrees Fahrenheit to degrees Celsius. This function is given as [tex]\( C(n) = \frac{5}{9} \times (r - 32) \)[/tex]. However, we will focus more on what [tex]\( C(F) \)[/tex] symbolizes.

When working with temperature conversions:

1. Understand the formula: The formula [tex]\( C = \frac{5}{9} \times (F - 32) \)[/tex] is specifically used for converting a temperature from Fahrenheit (F) to Celsius (C).

2. Identify the components:
- [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit.
- [tex]\( C \)[/tex] represents the temperature in degrees Celsius that results from applying the conversion formula.

3. Expressing [tex]\( C(F) \)[/tex]:
- Here, [tex]\( C(F) \)[/tex] indicates that "C" is a function where "F" is the input value expressed in degrees Fahrenheit.
- The process involves taking a Fahrenheit value (F), applying the formula, and obtaining a Celsius value (C) as the output.

So, the correct interpretation of [tex]\( C(F) \)[/tex] is:
- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.

This means that for any given Fahrenheit temperature entered into the function, [tex]\( C(F) \)[/tex], you get a corresponding temperature in Celsius.