For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F) = \frac{5}{9}(F-32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

Sure! Let's look at what the function [tex]$C(F) = \frac{5}{9}(F-32)$[/tex] means and what [tex]$C(F)$[/tex] represents.

1. Understand the Function:
- The function [tex]$C(F)$[/tex] is provided to convert temperatures from degrees Fahrenheit to degrees Celsius.
- The formula [tex]$C(F) = \frac{5}{9}(F - 32)$[/tex] is specifically used for this conversion.

2. Identify the Input and Output:
- Input: The temperature in degrees Fahrenheit, denoted by [tex]$F$[/tex]. This is what you are starting with before the conversion.
- Output: The temperature in degrees Celsius, which is what you're calculating using the function.

3. Role of [tex]$C(F)$[/tex]:
- [tex]$C(F)$[/tex] represents the temperature in degrees Celsius.
- This is the result after you apply the function to convert a given Fahrenheit temperature [tex]$F$[/tex].

4. Clarify the Representation:
- [tex]$C(F)$[/tex] is the result of inputting a Fahrenheit temperature ([tex]$F$[/tex]) into the function, and it gives us the equivalent temperature in Celsius.

Based on these points, the correct interpretation of [tex]$C(F)$[/tex] is:
"[tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit."