College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex].

What does [tex]$C(F)$[/tex] represent?

A. [tex][tex]$C(F)$[/tex][/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

B. [tex][tex]$C(F)$[/tex][/tex] represents the output of the function [tex]$F$[/tex] in degrees Fahrenheit when the input [tex]$C$[/tex] is in degrees Celsius.

C. [tex][tex]$C(F)$[/tex][/tex] represents the output of the function [tex]$C$[/tex] in degrees Fahrenheit when the input [tex]$F$[/tex] is in degrees Celsius.

D. [tex][tex]$C(F)$[/tex][/tex] represents the output of the function [tex]$F$[/tex] in degrees Celsius when the input [tex]$C$[/tex] is in degrees Fahrenheit.

Answer :

To determine what [tex]\( C(F) \)[/tex] represents in the context of the given function, we first need to understand the function and its components.

The function is:

[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]

This formula is used for converting temperatures from degrees Fahrenheit (°F) to degrees Celsius (°C).

Let's break this down:

1. Function Notation [tex]\( C(F) \)[/tex]: Here, [tex]\( C \)[/tex] stands for the degrees Celsius. The function [tex]\( C(F) \)[/tex] represents the temperature in degrees Celsius after the conversion from Fahrenheit.

2. Input and Calculation:
- The input [tex]\( F \)[/tex] is the temperature in degrees Fahrenheit.
- The function processes this input by first subtracting 32 from [tex]\( F \)[/tex]. This is because the conversion needs to offset the Fahrenheit scale to the Celsius scale.
- Then, the result is multiplied by [tex]\(\frac{5}{9}\)[/tex]. This step scales the difference from step 1 to convert it appropriately to the Celsius scale.

3. Output [tex]\( C(F) \)[/tex]: The outcome of the function is the temperature in degrees Celsius. Thus, [tex]\( C(F) \)[/tex] is the output of the function in degrees Celsius.

From this analysis, we can say that:

- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.

Therefore, the correct interpretation or representation of [tex]\( C(F) \)[/tex] is:

[tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.