High School

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex].

What does [tex]$C(F)$[/tex] represent?

A. [tex][tex]$C(F)$[/tex][/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

B. [tex][tex]$C(F)$[/tex][/tex] represents the output of the function [tex]$F$[/tex] in degrees Fahrenheit when the input [tex]$C$[/tex] is in degrees Celsius.

C. [tex][tex]$C(F)$[/tex][/tex] represents the output of the function [tex]$C$[/tex] in degrees Fahrenheit when the input [tex]$F$[/tex] is in degrees Celsius.

D. [tex][tex]$C(F)$[/tex][/tex] represents the output of the function [tex]$F$[/tex] in degrees Celsius when the input [tex]$C$[/tex] is in degrees Fahrenheit.

Answer :

Sure, let's break down the question step-by-step to understand what [tex]$C(F)$[/tex] represents.

The function given is [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].

### Step 1: Understanding the Function

- [tex]\( C(F) \)[/tex]: This is the function notation. Here, [tex]\( C \)[/tex] is the function that takes an input [tex]\( F \)[/tex].
- [tex]\( F \)[/tex]: This represents the temperature in degrees Fahrenheit. It's the input to the function.
- [tex]\( C(F) \)[/tex]: This is the output of the function, representing what you'll find when you input [tex]\( F \)[/tex] into the function.

### Step 2: What Does the Function Do?

The function converts a temperature from Fahrenheit to Celsius. It does so by:

- Subtracting 32 from the Fahrenheit temperature ([tex]\( F - 32 \)[/tex]).
- Multiplying the result by [tex]\( \frac{5}{9} \)[/tex].

This is a standard formula to convert Fahrenheit to Celsius.

### Step 3: What Does [tex]\( C(F) \)[/tex] Represent?

From the function, we can see:

- The input [tex]\( F \)[/tex] is in degrees Fahrenheit.
- The expression [tex]\(\frac{5}{9}(F - 32)\)[/tex] gives us the temperature in degrees Celsius.

Therefore, [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex], which is the temperature in degrees Celsius after converting it from Fahrenheit.

### Conclusion

Based on this understanding, the correct interpretation is:

[tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.