Answer :
To solve the problem of understanding what [tex]$C(F)$[/tex] represents in the given function, let's break this down:
1. Understanding the Function:
- The function given is [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].
- This is a common formula for converting temperatures from degrees Fahrenheit to degrees Celsius.
2. Analyzing the Variables:
- [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit.
- [tex]\( C(F) \)[/tex] represents the temperature in degrees Celsius after performing the conversion using the formula.
3. Assessing the Options:
- Option 1: [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.
- This option correctly describes the function: it takes a Fahrenheit temperature, converts it, and outputs the Celsius temperature.
- Option 2: [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Fahrenheit when the input [tex]$C$[/tex] is in degrees Celsius.
- This option mixes up the roles of inputs and outputs and doesn't align with the function we are using.
- Option 3: [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Fahrenheit when the input [tex]$F$[/tex] is in degrees Celsius.
- This option incorrectly states the output in Fahrenheit; the function converts to Celsius.
- Option 4: [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Celsius when the input [tex]$C$[/tex] is in degrees Fahrenheit.
- This option misidentifies the function roles and describes the process incorrectly.
4. Conclusion:
- Based on the analysis above, the correct choice is Option 1: [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit. This is because the function performs a conversion from Fahrenheit to Celsius, providing a Celsius result for any given Fahrenheit input.
1. Understanding the Function:
- The function given is [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].
- This is a common formula for converting temperatures from degrees Fahrenheit to degrees Celsius.
2. Analyzing the Variables:
- [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit.
- [tex]\( C(F) \)[/tex] represents the temperature in degrees Celsius after performing the conversion using the formula.
3. Assessing the Options:
- Option 1: [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.
- This option correctly describes the function: it takes a Fahrenheit temperature, converts it, and outputs the Celsius temperature.
- Option 2: [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Fahrenheit when the input [tex]$C$[/tex] is in degrees Celsius.
- This option mixes up the roles of inputs and outputs and doesn't align with the function we are using.
- Option 3: [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Fahrenheit when the input [tex]$F$[/tex] is in degrees Celsius.
- This option incorrectly states the output in Fahrenheit; the function converts to Celsius.
- Option 4: [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Celsius when the input [tex]$C$[/tex] is in degrees Fahrenheit.
- This option misidentifies the function roles and describes the process incorrectly.
4. Conclusion:
- Based on the analysis above, the correct choice is Option 1: [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit. This is because the function performs a conversion from Fahrenheit to Celsius, providing a Celsius result for any given Fahrenheit input.