Answer :
We are given the conversion function
[tex]$$
C(F) = \frac{5}{9}(F-32),
$$[/tex]
which converts a temperature from degrees Fahrenheit to degrees Celsius.
Here is a step-by-step explanation:
1. The function takes an input [tex]$F$[/tex], which is the temperature in degrees Fahrenheit.
2. In the function, the term [tex]$(F - 32)$[/tex] subtracts 32 from the Fahrenheit temperature, accounting for the difference between the starting points of the Fahrenheit and Celsius scales.
3. Multiplying by [tex]$\frac{5}{9}$[/tex] scales the difference [tex]$F - 32$[/tex] so that it is correctly converted into degrees Celsius.
4. Thus, the output [tex]$C(F)$[/tex] is the temperature expressed in degrees Celsius.
Therefore, [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.
The correct choice is:
1. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.
[tex]$$
C(F) = \frac{5}{9}(F-32),
$$[/tex]
which converts a temperature from degrees Fahrenheit to degrees Celsius.
Here is a step-by-step explanation:
1. The function takes an input [tex]$F$[/tex], which is the temperature in degrees Fahrenheit.
2. In the function, the term [tex]$(F - 32)$[/tex] subtracts 32 from the Fahrenheit temperature, accounting for the difference between the starting points of the Fahrenheit and Celsius scales.
3. Multiplying by [tex]$\frac{5}{9}$[/tex] scales the difference [tex]$F - 32$[/tex] so that it is correctly converted into degrees Celsius.
4. Thus, the output [tex]$C(F)$[/tex] is the temperature expressed in degrees Celsius.
Therefore, [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.
The correct choice is:
1. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.