College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]$C(F) = \frac{5}{9}(F-32)$[/tex]. What does [tex]$C(F)$[/tex] represent?

A. [tex][tex]$C(F)$[/tex][/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

B. [tex][tex]$C(F)$[/tex][/tex] represents the output of the function [tex]$F$[/tex] in degrees Fahrenheit when the input [tex]$C$[/tex] is in degrees Celsius.

C. [tex][tex]$C(F)$[/tex][/tex] represents the output of the function [tex]$C$[/tex] in degrees Fahrenheit when the input [tex]$F$[/tex] is in degrees Celsius.

D. [tex][tex]$C(F)$[/tex][/tex] represents the output of the function [tex]$F$[/tex] in degrees Celsius when the input [tex]$C$[/tex] is in degrees Fahrenheit.

Answer :

We are given the function

[tex]$$
C(F)=\frac{5}{9}(F-32)
$$[/tex]

which is the standard formula for converting a temperature from degrees Fahrenheit to degrees Celsius.

Here is a step-by-step explanation:

1. The variable [tex]$F$[/tex] represents a temperature in degrees Fahrenheit.

2. The expression inside the parentheses, [tex]$F-32$[/tex], adjusts the Fahrenheit temperature, and then multiplying by [tex]$\frac{5}{9}$[/tex] converts this adjusted value to degrees Celsius.

3. Therefore, when you input a temperature in Fahrenheit into the function, the output, [tex]$C(F)$[/tex], is the equivalent temperature in degrees Celsius.

Thus, [tex]$C(F)$[/tex] represents the output of the function in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

The correct answer is: Option 1.