Answer :
The function given is
[tex]$$
C(F)=\frac{5}{9}(F-32).
$$[/tex]
This means that if you input a temperature in degrees Fahrenheit ([tex]$F$[/tex]), the function calculates the corresponding temperature in degrees Celsius. Here is the step-by-step reasoning:
1. In function notation, the notation [tex]$C(F)$[/tex] denotes that the function [tex]$C$[/tex] takes an input value [tex]$F$[/tex]. In this context, [tex]$F$[/tex] is the temperature in degrees Fahrenheit.
2. The formula
[tex]$$
C(F)=\frac{5}{9}(F-32)
$$[/tex]
converts the Fahrenheit temperature to Celsius. The operations performed on [tex]$F$[/tex] (subtracting [tex]$32$[/tex], then multiplying by [tex]$\frac{5}{9}$[/tex]) follow the standard conversion formula from degrees Fahrenheit to degrees Celsius.
3. Since the output of the function is the Celsius temperature, [tex]$C(F)$[/tex] represents the value of the temperature in degrees Celsius corresponding to an input temperature [tex]$F$[/tex] given in degrees Fahrenheit.
Thus, the correct interpretation is:
[tex]$$
\textbf{$C(F)$ represents the output of the function $C$ in degrees Celsius when the input $F$ is in degrees Fahrenheit.}
$$[/tex]
[tex]$$
C(F)=\frac{5}{9}(F-32).
$$[/tex]
This means that if you input a temperature in degrees Fahrenheit ([tex]$F$[/tex]), the function calculates the corresponding temperature in degrees Celsius. Here is the step-by-step reasoning:
1. In function notation, the notation [tex]$C(F)$[/tex] denotes that the function [tex]$C$[/tex] takes an input value [tex]$F$[/tex]. In this context, [tex]$F$[/tex] is the temperature in degrees Fahrenheit.
2. The formula
[tex]$$
C(F)=\frac{5}{9}(F-32)
$$[/tex]
converts the Fahrenheit temperature to Celsius. The operations performed on [tex]$F$[/tex] (subtracting [tex]$32$[/tex], then multiplying by [tex]$\frac{5}{9}$[/tex]) follow the standard conversion formula from degrees Fahrenheit to degrees Celsius.
3. Since the output of the function is the Celsius temperature, [tex]$C(F)$[/tex] represents the value of the temperature in degrees Celsius corresponding to an input temperature [tex]$F$[/tex] given in degrees Fahrenheit.
Thus, the correct interpretation is:
[tex]$$
\textbf{$C(F)$ represents the output of the function $C$ in degrees Celsius when the input $F$ is in degrees Fahrenheit.}
$$[/tex]