High School

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F) = \frac{5}{9}(F-32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

The conversion formula provided is

$$
C(F) = \frac{5}{9}(F-32).
$$

This formula converts a temperature from degrees Fahrenheit to degrees Celsius. Here, the variable $F$ represents the temperature in degrees Fahrenheit, and the function outputs $C(F)$ in degrees Celsius.

Step-by-step explanation:

1. The function is defined as $$ C(F) = \frac{5}{9}(F-32). $$
This indicates that when you plug a Fahrenheit temperature, $F$, into the function, the result is the corresponding Celsius temperature.

2. The input of the function is $F$ (in degrees Fahrenheit), and the output is $C(F)$ (in degrees Celsius).

3. Therefore, the correct interpretation of $C(F)$ is:
"$C(F)$ represents the output of the function $C$ in degrees Celsius when the input $F$ is in degrees Fahrenheit."

So, the correct answer is option 1.