Answer :
Sure! Let's solve the problem step by step.
We are given the function [tex]\( f(x) = 4|x - 5| + 3 \)[/tex] and need to find the values of [tex]\( x \)[/tex] where [tex]\( f(x) = 15 \)[/tex].
1. Set the function equal to 15:
[tex]\[
4|x - 5| + 3 = 15
\][/tex]
2. Subtract 3 from both sides:
[tex]\[
4|x - 5| = 12
\][/tex]
3. Divide both sides by 4:
[tex]\[
|x - 5| = 3
\][/tex]
4. Solve the absolute value equation:
The equation [tex]\( |x - 5| = 3 \)[/tex] means that [tex]\( x - 5 \)[/tex] can be 3 or -3.
- First scenario: [tex]\( x - 5 = 3 \)[/tex]
[tex]\[
x = 3 + 5 = 8
\][/tex]
- Second scenario: [tex]\( x - 5 = -3 \)[/tex]
[tex]\[
x = -3 + 5 = 2
\][/tex]
Therefore, the values of [tex]\( x \)[/tex] that make [tex]\( f(x) = 15 \)[/tex] are [tex]\( x = 8 \)[/tex] and [tex]\( x = 2 \)[/tex].
Thus, the correct answer is [tex]\( x=2, x=8 \)[/tex].
We are given the function [tex]\( f(x) = 4|x - 5| + 3 \)[/tex] and need to find the values of [tex]\( x \)[/tex] where [tex]\( f(x) = 15 \)[/tex].
1. Set the function equal to 15:
[tex]\[
4|x - 5| + 3 = 15
\][/tex]
2. Subtract 3 from both sides:
[tex]\[
4|x - 5| = 12
\][/tex]
3. Divide both sides by 4:
[tex]\[
|x - 5| = 3
\][/tex]
4. Solve the absolute value equation:
The equation [tex]\( |x - 5| = 3 \)[/tex] means that [tex]\( x - 5 \)[/tex] can be 3 or -3.
- First scenario: [tex]\( x - 5 = 3 \)[/tex]
[tex]\[
x = 3 + 5 = 8
\][/tex]
- Second scenario: [tex]\( x - 5 = -3 \)[/tex]
[tex]\[
x = -3 + 5 = 2
\][/tex]
Therefore, the values of [tex]\( x \)[/tex] that make [tex]\( f(x) = 15 \)[/tex] are [tex]\( x = 8 \)[/tex] and [tex]\( x = 2 \)[/tex].
Thus, the correct answer is [tex]\( x=2, x=8 \)[/tex].