Answer :
Let's solve each part of the question step by step.
### First Function: [tex]\( f(x) = 4|x-5| + 3 \)[/tex]
We need to find values of [tex]\( x \)[/tex] such that [tex]\( f(x) = 15 \)[/tex].
1. Set the function equal to 15:
[tex]\[
4|x-5| + 3 = 15
\][/tex]
2. Subtract 3 from both sides to isolate the absolute value term:
[tex]\[
4|x-5| = 12
\][/tex]
3. Divide both sides by 4:
[tex]\[
|x-5| = 3
\][/tex]
4. Solve the absolute value equation. An absolute value equation [tex]\( |a| = b \)[/tex] has two solutions: [tex]\( a = b \)[/tex] and [tex]\( a = -b \)[/tex].
- Case 1: [tex]\( x-5 = 3 \)[/tex]
[tex]\[
x = 8
\][/tex]
- Case 2: [tex]\( x-5 = -3 \)[/tex]
[tex]\[
x = 2
\][/tex]
Therefore, the values of [tex]\( x \)[/tex] that satisfy the equation are [tex]\( x = 2 \)[/tex] and [tex]\( x = 8 \)[/tex].
### Second Function: [tex]\( f(x) = -0.5|2x+2| + 1 \)[/tex]
We need to find values of [tex]\( x \)[/tex] such that [tex]\( f(x) = 6 \)[/tex].
1. Set the function equal to 6:
[tex]\[
-0.5|2x+2| + 1 = 6
\][/tex]
2. Subtract 1 from both sides:
[tex]\[
-0.5|2x+2| = 5
\][/tex]
3. Divide by -0.5, which will flip the equation since we are dividing by a negative number:
[tex]\[
|2x+2| = -10
\][/tex]
The absolute value [tex]\( |2x+2| = -10 \)[/tex] does not have any solutions because an absolute value cannot be negative. Hence, there is no solution for [tex]\( x \)[/tex].
In summary:
- For the first function [tex]\( f(x) = 4|x-5| + 3 \)[/tex], the solutions are [tex]\( x = 2 \)[/tex] and [tex]\( x = 8 \)[/tex].
- For the second function [tex]\( f(x) = -0.5|2x+2| + 1 \)[/tex], there is no solution.
### First Function: [tex]\( f(x) = 4|x-5| + 3 \)[/tex]
We need to find values of [tex]\( x \)[/tex] such that [tex]\( f(x) = 15 \)[/tex].
1. Set the function equal to 15:
[tex]\[
4|x-5| + 3 = 15
\][/tex]
2. Subtract 3 from both sides to isolate the absolute value term:
[tex]\[
4|x-5| = 12
\][/tex]
3. Divide both sides by 4:
[tex]\[
|x-5| = 3
\][/tex]
4. Solve the absolute value equation. An absolute value equation [tex]\( |a| = b \)[/tex] has two solutions: [tex]\( a = b \)[/tex] and [tex]\( a = -b \)[/tex].
- Case 1: [tex]\( x-5 = 3 \)[/tex]
[tex]\[
x = 8
\][/tex]
- Case 2: [tex]\( x-5 = -3 \)[/tex]
[tex]\[
x = 2
\][/tex]
Therefore, the values of [tex]\( x \)[/tex] that satisfy the equation are [tex]\( x = 2 \)[/tex] and [tex]\( x = 8 \)[/tex].
### Second Function: [tex]\( f(x) = -0.5|2x+2| + 1 \)[/tex]
We need to find values of [tex]\( x \)[/tex] such that [tex]\( f(x) = 6 \)[/tex].
1. Set the function equal to 6:
[tex]\[
-0.5|2x+2| + 1 = 6
\][/tex]
2. Subtract 1 from both sides:
[tex]\[
-0.5|2x+2| = 5
\][/tex]
3. Divide by -0.5, which will flip the equation since we are dividing by a negative number:
[tex]\[
|2x+2| = -10
\][/tex]
The absolute value [tex]\( |2x+2| = -10 \)[/tex] does not have any solutions because an absolute value cannot be negative. Hence, there is no solution for [tex]\( x \)[/tex].
In summary:
- For the first function [tex]\( f(x) = 4|x-5| + 3 \)[/tex], the solutions are [tex]\( x = 2 \)[/tex] and [tex]\( x = 8 \)[/tex].
- For the second function [tex]\( f(x) = -0.5|2x+2| + 1 \)[/tex], there is no solution.