High School

k) log_4 16 =
l) log_4 64 =
m) log_4 256 =
n) log_5 25 =
o) log_5 125 =

Answer :

Let's solve each of these logarithmic expressions. Remember, a logarithm can be defined as the exponent to which the base must be raised to produce a given number.

k) [tex]\log_4 16[/tex]

To solve [tex]\log_4 16[/tex], you need to determine what power 4 must be raised to in order to get 16.

First, express 16 as a power of 4:
16 = 4^2

So, [tex]\log_4 16 = 2[/tex].

l) [tex]\log_4 64[/tex]

To solve [tex]\log_4 64[/tex], express 64 as a power of 4.

Since 64 = 4^3,

[tex]\log_4 64 = 3[/tex].

m) [tex]\log_4 256[/tex]

To find [tex]\log_4 256[/tex], express 256 as a power of 4.

256 = 4^4

Therefore, [tex]\log_4 256 = 4[/tex].

n) [tex]\log_5 25[/tex]

To solve [tex]\log_5 25[/tex], you want to express 25 as a power of 5.

Since 25 = 5^2,

[tex]\log_5 25 = 2[/tex].

o) [tex]\log_5 125[/tex]

Finally, for [tex]\log_5 125[/tex], express 125 as a power of 5.

125 = 5^3

Therefore, [tex]\log_5 125 = 3[/tex].

In summary, here are the solutions to the logarithmic expressions:

k) [tex]\log_4 16 = 2[/tex]

l) [tex]\log_4 64 = 3[/tex]

m) [tex]\log_4 256 = 4[/tex]

n) [tex]\log_5 25 = 2[/tex]

o) [tex]\log_5 125 = 3[/tex]