Answer :
To determine what [tex]\( C(76.1) \)[/tex] represents, we need to use the function [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex] to convert a given temperature from Fahrenheit to Celsius.
In this case, [tex]\( F = 76.1 \)[/tex] degrees Fahrenheit is the temperature that Kareem found. By plugging [tex]\( 76.1 \)[/tex] into the function, we can find the equivalent temperature in degrees Celsius.
### Step-by-Step Calculation:
1. Start with the given function:
[tex]\[
C(F) = \frac{5}{9}(F - 32)
\][/tex]
2. Substitute [tex]\( F = 76.1 \)[/tex] into the function:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]
3. Calculate inside the parentheses first:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
4. Multiply by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1
\][/tex]
5. Perform the multiplication:
[tex]\[
C(76.1) = 24.5
\][/tex]
Thus, [tex]\( C(76.1) \)[/tex] represents the conversion of 76.1 degrees Fahrenheit to approximately 24.5 degrees Celsius.
In this case, [tex]\( F = 76.1 \)[/tex] degrees Fahrenheit is the temperature that Kareem found. By plugging [tex]\( 76.1 \)[/tex] into the function, we can find the equivalent temperature in degrees Celsius.
### Step-by-Step Calculation:
1. Start with the given function:
[tex]\[
C(F) = \frac{5}{9}(F - 32)
\][/tex]
2. Substitute [tex]\( F = 76.1 \)[/tex] into the function:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]
3. Calculate inside the parentheses first:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
4. Multiply by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1
\][/tex]
5. Perform the multiplication:
[tex]\[
C(76.1) = 24.5
\][/tex]
Thus, [tex]\( C(76.1) \)[/tex] represents the conversion of 76.1 degrees Fahrenheit to approximately 24.5 degrees Celsius.