High School

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex]. What does [tex]$C(F)$[/tex] represent?



A. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.



B. [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Fahrenheit when the input [tex]$C$[/tex] is in degrees Celsius.



C. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Fahrenheit when the input [tex]$F$[/tex] is in degrees Celsius.



D. [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Celsius when the input [tex]$C$[/tex] is in degrees Fahrenheit.

Answer :

The function is defined as

$$
C(F) = \frac{5}{9}(F - 32).
$$

This formula converts a temperature in Fahrenheit to its equivalent in Celsius. Here are the steps to understand the conversion:

1. The variable $F$ represents the temperature in degrees Fahrenheit.

2. The formula subtracts 32 from $F$, which accounts for the difference in the starting points of the Fahrenheit and Celsius scales.

3. Multiplying by $\frac{5}{9}$ changes the scale from Fahrenheit degrees to Celsius degrees.

Thus, the function $C(F)$ gives the temperature in degrees Celsius when the input $F$ is a temperature in degrees Fahrenheit.

Therefore, the correct interpretation is:

$$
\text{C(F) represents the output of the function C in degrees Celsius when the input F is in degrees Fahrenheit.}
$$