High School

Rewrite the following expression as a single logarithm with coefficient 1.
3log₅ uv²/u³
a. Log₅ uv²
b. Log₅ uv⁶/u⁹
c. Log₅ u³v⁶/w³
d. Log₅ u³v⁶/w⁹

Answer :

The correct answer is b) Log₅ uv⁶/u⁹).

Apply the power rule of logarithms: n log_b(x) = log_b([tex]x^n[/tex]).

This gives us: log₅((uv²/u³a)³).

Simplify the expression inside the logarithm: (uv²/u³a)³ = (u/u³ * v²/a)³ = ([tex]u^1/u^3 * v^2[/tex]/a)³ = [tex]u^{-2}[/tex]v²[tex]a^{-1}^3[/tex] = [tex]u^(-6)v^6a^{-3).[/tex]

Now, we have: log₅[tex](u^{-6}v^6a^{-3}).[/tex]

Thus, the expression simplified to a single logarithm is: log₅ u⁻⁶v⁶a⁻³, which can be further simplified to log₅ (v⁶/u⁶a³). So, the correct choice is (b) Log₅ uv⁶/u⁹).