Answer :
To solve the equation [tex]\(4|x+5| + 8 = 24\)[/tex], follow these steps:
1. Isolate the Absolute Value Term:
- Start by subtracting 8 from both sides to get:
[tex]\[
4|x+5| = 16
\][/tex]
2. Simplify:
- Divide both sides by 4 to isolate the absolute value:
[tex]\[
|x+5| = 4
\][/tex]
3. Remove the Absolute Value:
- The equation [tex]\(|x+5| = 4\)[/tex] gives us two cases to consider:
- Case 1: [tex]\(x + 5 = 4\)[/tex]
- Case 2: [tex]\(x + 5 = -4\)[/tex]
4. Solve for [tex]\(x\)[/tex] in Each Case:
- Case 1:
[tex]\[
x + 5 = 4
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = 4 - 5 = -1
\][/tex]
- Case 2:
[tex]\[
x + 5 = -4
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = -4 - 5 = -9
\][/tex]
So the solutions to the equation [tex]\(4|x+5| + 8 = 24\)[/tex] are [tex]\(x = -1\)[/tex] and [tex]\(x = -9\)[/tex].
The correct answer is [tex]\( \boxed{B} \)[/tex] [tex]\(x = -1\)[/tex] and [tex]\(x = -9\)[/tex].
1. Isolate the Absolute Value Term:
- Start by subtracting 8 from both sides to get:
[tex]\[
4|x+5| = 16
\][/tex]
2. Simplify:
- Divide both sides by 4 to isolate the absolute value:
[tex]\[
|x+5| = 4
\][/tex]
3. Remove the Absolute Value:
- The equation [tex]\(|x+5| = 4\)[/tex] gives us two cases to consider:
- Case 1: [tex]\(x + 5 = 4\)[/tex]
- Case 2: [tex]\(x + 5 = -4\)[/tex]
4. Solve for [tex]\(x\)[/tex] in Each Case:
- Case 1:
[tex]\[
x + 5 = 4
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = 4 - 5 = -1
\][/tex]
- Case 2:
[tex]\[
x + 5 = -4
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = -4 - 5 = -9
\][/tex]
So the solutions to the equation [tex]\(4|x+5| + 8 = 24\)[/tex] are [tex]\(x = -1\)[/tex] and [tex]\(x = -9\)[/tex].
The correct answer is [tex]\( \boxed{B} \)[/tex] [tex]\(x = -1\)[/tex] and [tex]\(x = -9\)[/tex].