College

Solve for [tex]x[/tex]:

[tex]-4|x+5| = -16[/tex]

A. [tex]x = \frac{21}{4}, x = -\frac{11}{4}[/tex]
B. [tex]x = -1, x = 9[/tex]
C. [tex]x = -1, x = -9[/tex]
D. No solution

Answer :

To solve the equation [tex]\( x - 4|x + 5| = -16 \)[/tex], we need to consider the definition of the absolute value. The equation [tex]\( x - 4|x + 5| = -16 \)[/tex] can have different cases based on the value of [tex]\( x + 5 \)[/tex].

### Case 1: [tex]\( x + 5 \geq 0 \)[/tex] (which implies [tex]\( x \geq -5 \)[/tex])
In this case, [tex]\( |x+5| = x+5 \)[/tex]. So the equation becomes:
[tex]\[ x - 4(x + 5) = -16 \][/tex]

Simplifying the left side:
[tex]\[ x - 4x - 20 = -16 \][/tex]
[tex]\[ -3x - 20 = -16 \][/tex]
Add 20 to both sides:
[tex]\[ -3x = 4 \][/tex]
Divide by -3:
[tex]\[ x = -\frac{4}{3} \][/tex]

Now we need to check if [tex]\( x = -\frac{4}{3} \geq -5 \)[/tex].
[tex]\[ -\frac{4}{3} \approx -1.3 \geq -5 \][/tex]
This is true, so [tex]\( x = -\frac{4}{3} \)[/tex] is a valid solution for this case.

### Case 2: [tex]\( x + 5 < 0 \)[/tex] (which implies [tex]\( x < -5 \)[/tex])
In this case, [tex]\( |x+5| = -(x+5) \)[/tex]. So the equation becomes:
[tex]\[ x - 4(-(x + 5)) = -16 \][/tex]

Simplifying the left side:
[tex]\[ x + 4(x + 5) = -16 \][/tex]
[tex]\[ x + 4x + 20 = -16 \][/tex]
[tex]\[ 5x + 20 = -16 \][/tex]
Subtract 20 from both sides:
[tex]\[ 5x = -36 \][/tex]
Divide by 5:
[tex]\[ x = -\frac{36}{5} \][/tex]

Now we need to check if [tex]\( x = -\frac{36}{5} < -5 \)[/tex].
[tex]\[ -\frac{36}{5} = -7.2 \][/tex]
This is true, so [tex]\( x = -\frac{36}{5} \)[/tex] is a valid solution for this case.

### Conclusion

So the equation [tex]\( x - 4|x+5| = -16 \)[/tex] has two solutions:
[tex]\[ x = -\frac{4}{3} \][/tex]
[tex]\[ x = -\frac{36}{5} \][/tex]

However, none of the provided options exactly match these solutions as they are expressed. It's important to interpret them carefully within the given choices.

- [tex]\( x = \frac{21}{4}, x = -\frac{11}{4} \)[/tex]
- [tex]\( x = -1, x = 9 \)[/tex]
- [tex]\( x = -1, x = -9 \)[/tex]
- No solution

Given the unique solutions found, which do not match either provided option directly, the correct choice here would be:
- No solution.

Thus, the final answer to the question is:
- No solution