Answer :
Let's solve the equation [tex]\(-4|x+5| = -16\)[/tex] step by step:
1. Isolate the Absolute Value:
- Divide both sides of the equation by [tex]\(-4\)[/tex] to get [tex]\(|x+5| = 4\)[/tex].
2. Remove the Absolute Value:
- The equation [tex]\(|x+5| = 4\)[/tex] implies two separate equations:
- [tex]\(x + 5 = 4\)[/tex]
- [tex]\(x + 5 = -4\)[/tex]
3. Solve Each Equation Separately:
- First Equation:
- [tex]\(x + 5 = 4\)[/tex]
- Subtract 5 from both sides:
[tex]\[
x = 4 - 5
\][/tex]
[tex]\[
x = -1
\][/tex]
- Second Equation:
- [tex]\(x + 5 = -4\)[/tex]
- Subtract 5 from both sides:
[tex]\[
x = -4 - 5
\][/tex]
[tex]\[
x = -9
\][/tex]
4. Solution:
- The solutions for the given equation are [tex]\(x = -1\)[/tex] and [tex]\(x = -9\)[/tex].
So, the correct set of solutions is: [tex]\( x = -1, x = -9 \)[/tex].
1. Isolate the Absolute Value:
- Divide both sides of the equation by [tex]\(-4\)[/tex] to get [tex]\(|x+5| = 4\)[/tex].
2. Remove the Absolute Value:
- The equation [tex]\(|x+5| = 4\)[/tex] implies two separate equations:
- [tex]\(x + 5 = 4\)[/tex]
- [tex]\(x + 5 = -4\)[/tex]
3. Solve Each Equation Separately:
- First Equation:
- [tex]\(x + 5 = 4\)[/tex]
- Subtract 5 from both sides:
[tex]\[
x = 4 - 5
\][/tex]
[tex]\[
x = -1
\][/tex]
- Second Equation:
- [tex]\(x + 5 = -4\)[/tex]
- Subtract 5 from both sides:
[tex]\[
x = -4 - 5
\][/tex]
[tex]\[
x = -9
\][/tex]
4. Solution:
- The solutions for the given equation are [tex]\(x = -1\)[/tex] and [tex]\(x = -9\)[/tex].
So, the correct set of solutions is: [tex]\( x = -1, x = -9 \)[/tex].