College

Solve [tex]$4|x+5|=16$[/tex]

A. [tex][tex]$x=1$[/tex] and $x=-1$[/tex]
B. [tex][tex]$x=1$[/tex] and $x=-9$[/tex]
C. [tex][tex]$x=-1$[/tex] and $x=-9$[/tex]
D. [tex][tex]$x=-1$[/tex] and $x=9$[/tex]

Answer :

Sure! Let's solve the equation step by step:

We start with the given equation:

[tex]\[ 4|x + 5| = 16 \][/tex]

1. Divide both sides by 4:

[tex]\[ |x + 5| = 4 \][/tex]

2. Solve the absolute value equation:

[tex]\[ |x + 5| = 4 \][/tex]

The absolute value equation [tex]\(|A| = B\)[/tex] can be split into two separate equations: [tex]\(A = B\)[/tex] and [tex]\(A = -B\)[/tex]. Applying this to our equation:

[tex]\[ x + 5 = 4 \quad \text{or} \quad x + 5 = -4 \][/tex]

3. Solve each equation separately:

- For [tex]\(x + 5 = 4\)[/tex]:

[tex]\[ x + 5 = 4 \][/tex]

Subtract 5 from both sides:

[tex]\[ x = 4 - 5 \][/tex]
[tex]\[ x = -1 \][/tex]

- For [tex]\(x + 5 = -4\)[/tex]:

[tex]\[ x + 5 = -4 \][/tex]

Subtract 5 from both sides:

[tex]\[ x = -4 - 5 \][/tex]
[tex]\[ x = -9 \][/tex]

4. Combine the solutions:

The solutions to the equation are:

[tex]\[ x = -1 \quad \text{and} \quad x = -9 \][/tex]

So, the correct answer is:

[tex]\[ C. \, x = -1 \, \text{and} \, x = -9 \][/tex]