College

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]76.1^{\circ}[/tex]. He plans to use the function [tex]C(F)=\frac{5}{9}(F-32)[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]C(76.1)[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius
B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit
C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius
D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit

Answer :

To find out what [tex]\( C(76.1) \)[/tex] represents, we need to understand the function given: [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex]. This function is used to convert a temperature from degrees Fahrenheit to degrees Celsius.

### Step-by-Step Solution

1. Identify the given temperature in Fahrenheit:
[tex]\[ F = 76.1^{\circ} \][/tex]

2. Use the conversion function [tex]\( C(F) \)[/tex] to convert the temperature:
[tex]\[ C(76.1) = \frac{5}{9} (76.1 - 32) \][/tex]

3. Calculate the difference:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]

4. Multiply the result by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]

5. Perform the multiplication:
[tex]\[ C(76.1) = 24.499999999999996 \][/tex]

After performing these steps, we see that:
[tex]\[ C(76.1) = 24.499999999999996 \][/tex]

This result tells us that [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius. Therefore, the correct interpretation of [tex]\( C(76.1) \)[/tex] is:

The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.