College

Solve [tex]$4|x+5|=16$[/tex]

A. [tex]$x=-1$[/tex] and [tex]$x=9$[/tex]
B. [tex]$x=-1$[/tex] and [tex]$x=-9$[/tex]
C. [tex]$x=1$[/tex] and [tex]$x=-9$[/tex]
D. [tex]$x=1$[/tex] and [tex]$x=-1$[/tex]

Answer :

Sure, let's solve [tex]\( 4|x+5| = 16 \)[/tex] step-by-step.

1. Start by isolating the absolute value.
[tex]\[ 4|x+5| = 16 \][/tex]

2. Divide both sides by 4.
[tex]\[ |x+5| = 4 \][/tex]

3. Now, consider the definition of absolute value.
The equation [tex]\( |x+5| = 4 \)[/tex] means that [tex]\( x+5 \)[/tex] can be either 4 or -4.

4. Solve for the two cases:

- Case 1:
[tex]\[ x + 5 = 4 \][/tex]
Subtract 5 from both sides:
[tex]\[ x = 4 - 5 \][/tex]
[tex]\[ x = -1 \][/tex]

- Case 2:
[tex]\[ x + 5 = -4 \][/tex]
Subtract 5 from both sides:
[tex]\[ x = -4 - 5 \][/tex]
[tex]\[ x = -9 \][/tex]

5. So, the solutions are [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex].

Therefore, the correct answer is:
B. [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex]