Answer :
To solve the equation [tex]\(4|x+5|=28\)[/tex], follow these steps:
1. Isolate the absolute value:
Divide both sides of the equation by 4:
[tex]\[
|x+5| = \frac{28}{4} = 7
\][/tex]
2. Solve for the two cases of the absolute value:
- Case 1: [tex]\(x + 5 = 7\)[/tex]
- Subtract 5 from both sides:
[tex]\[
x = 7 - 5 = 2
\][/tex]
- Case 2: [tex]\(x + 5 = -7\)[/tex]
- Subtract 5 from both sides:
[tex]\[
x = -7 - 5 = -12
\][/tex]
Thus, the solutions to the equation are [tex]\(x = 2\)[/tex] and [tex]\(x = -12\)[/tex].
Comparing these solutions with the given options:
- Option A: [tex]\(x=12\)[/tex] and [tex]\(x=-2\)[/tex]
- Option B: [tex]\(x=-12\)[/tex] and [tex]\(x=2\)[/tex]
- Option C: [tex]\(x=12\)[/tex] and [tex]\(x=-12\)[/tex]
- Option D: [tex]\(x=-12\)[/tex] and [tex]\(x=2\)[/tex]
The correct choice is Option B: [tex]\(x=-12\)[/tex] and [tex]\(x=2\)[/tex].
1. Isolate the absolute value:
Divide both sides of the equation by 4:
[tex]\[
|x+5| = \frac{28}{4} = 7
\][/tex]
2. Solve for the two cases of the absolute value:
- Case 1: [tex]\(x + 5 = 7\)[/tex]
- Subtract 5 from both sides:
[tex]\[
x = 7 - 5 = 2
\][/tex]
- Case 2: [tex]\(x + 5 = -7\)[/tex]
- Subtract 5 from both sides:
[tex]\[
x = -7 - 5 = -12
\][/tex]
Thus, the solutions to the equation are [tex]\(x = 2\)[/tex] and [tex]\(x = -12\)[/tex].
Comparing these solutions with the given options:
- Option A: [tex]\(x=12\)[/tex] and [tex]\(x=-2\)[/tex]
- Option B: [tex]\(x=-12\)[/tex] and [tex]\(x=2\)[/tex]
- Option C: [tex]\(x=12\)[/tex] and [tex]\(x=-12\)[/tex]
- Option D: [tex]\(x=-12\)[/tex] and [tex]\(x=2\)[/tex]
The correct choice is Option B: [tex]\(x=-12\)[/tex] and [tex]\(x=2\)[/tex].