Answer :
To solve the equation [tex]\( 4|x + 5| + 8 = 24 \)[/tex], let's go through the steps systematically:
1. Isolate the absolute value expression:
[tex]\[
4|x + 5| + 8 = 24
\][/tex]
Subtract 8 from both sides of the equation to isolate the absolute value term:
[tex]\[
4|x + 5| + 8 - 8 = 24 - 8
\][/tex]
[tex]\[
4|x + 5| = 16
\][/tex]
2. Divide by 4 to solve for the absolute value:
[tex]\[
\frac{4|x + 5|}{4} = \frac{16}{4}
\][/tex]
[tex]\[
|x + 5| = 4
\][/tex]
3. Consider the definition of absolute value:
The equation [tex]\( |x + 5| = 4 \)[/tex] means [tex]\( x + 5 \)[/tex] can be either 4 or -4.
Thus, we have two cases to solve:
[tex]\[
x + 5 = 4 \quad \text{or} \quad x + 5 = -4
\][/tex]
4. Solve each equation:
- For [tex]\( x + 5 = 4 \)[/tex]:
[tex]\[
x + 5 = 4
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = 4 - 5
\][/tex]
[tex]\[
x = -1
\][/tex]
- For [tex]\( x + 5 = -4 \)[/tex]:
[tex]\[
x + 5 = -4
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = -4 - 5
\][/tex]
[tex]\[
x = -9
\][/tex]
5. Combine the solutions:
The solutions to the equation [tex]\( 4|x + 5| + 8 = 24 \)[/tex] are [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex].
Hence, the correct answer is:
C. [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex]
1. Isolate the absolute value expression:
[tex]\[
4|x + 5| + 8 = 24
\][/tex]
Subtract 8 from both sides of the equation to isolate the absolute value term:
[tex]\[
4|x + 5| + 8 - 8 = 24 - 8
\][/tex]
[tex]\[
4|x + 5| = 16
\][/tex]
2. Divide by 4 to solve for the absolute value:
[tex]\[
\frac{4|x + 5|}{4} = \frac{16}{4}
\][/tex]
[tex]\[
|x + 5| = 4
\][/tex]
3. Consider the definition of absolute value:
The equation [tex]\( |x + 5| = 4 \)[/tex] means [tex]\( x + 5 \)[/tex] can be either 4 or -4.
Thus, we have two cases to solve:
[tex]\[
x + 5 = 4 \quad \text{or} \quad x + 5 = -4
\][/tex]
4. Solve each equation:
- For [tex]\( x + 5 = 4 \)[/tex]:
[tex]\[
x + 5 = 4
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = 4 - 5
\][/tex]
[tex]\[
x = -1
\][/tex]
- For [tex]\( x + 5 = -4 \)[/tex]:
[tex]\[
x + 5 = -4
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = -4 - 5
\][/tex]
[tex]\[
x = -9
\][/tex]
5. Combine the solutions:
The solutions to the equation [tex]\( 4|x + 5| + 8 = 24 \)[/tex] are [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex].
Hence, the correct answer is:
C. [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex]