Answer :
To solve the equation [tex]\(4|x+5| + 8 = 24\)[/tex], follow these steps:
1. Isolate the absolute value:
[tex]\[
4|x+5| + 8 = 24
\][/tex]
Subtract 8 from both sides:
[tex]\[
4|x+5| = 16
\][/tex]
Divide both sides by 4:
[tex]\[
|x+5| = 4
\][/tex]
2. Solve for the variable inside the absolute value:
The equation [tex]\( |x+5| = 4 \)[/tex] gives us two cases to consider:
[tex]\[
x+5 = 4 \quad \text{or} \quad x+5 = -4
\][/tex]
- For the first case: [tex]\( x+5 = 4 \)[/tex]
[tex]\[
x = 4 - 5
\][/tex]
[tex]\[
x = -1
\][/tex]
- For the second case: [tex]\( x+5 = -4 \)[/tex]
[tex]\[
x = -4 - 5
\][/tex]
[tex]\[
x = -9
\][/tex]
3. Combine the solutions:
The solutions to the equation are:
[tex]\[
x = -1 \quad \text{and} \quad x = -9
\][/tex]
So, the correct answer is:
[tex]\[
\boxed{C. \, x=-1 \text{ and } x=-9}
\][/tex]
1. Isolate the absolute value:
[tex]\[
4|x+5| + 8 = 24
\][/tex]
Subtract 8 from both sides:
[tex]\[
4|x+5| = 16
\][/tex]
Divide both sides by 4:
[tex]\[
|x+5| = 4
\][/tex]
2. Solve for the variable inside the absolute value:
The equation [tex]\( |x+5| = 4 \)[/tex] gives us two cases to consider:
[tex]\[
x+5 = 4 \quad \text{or} \quad x+5 = -4
\][/tex]
- For the first case: [tex]\( x+5 = 4 \)[/tex]
[tex]\[
x = 4 - 5
\][/tex]
[tex]\[
x = -1
\][/tex]
- For the second case: [tex]\( x+5 = -4 \)[/tex]
[tex]\[
x = -4 - 5
\][/tex]
[tex]\[
x = -9
\][/tex]
3. Combine the solutions:
The solutions to the equation are:
[tex]\[
x = -1 \quad \text{and} \quad x = -9
\][/tex]
So, the correct answer is:
[tex]\[
\boxed{C. \, x=-1 \text{ and } x=-9}
\][/tex]