Solve [tex]$4|x+6|=16$[/tex].

A. [tex][tex]$x=-2$[/tex][/tex] and [tex]$x=10$[/tex]
B. [tex]$x=2$[/tex] and [tex][tex]$x=-2$[/tex][/tex]
C. [tex]$x=-2$[/tex] and [tex]$x=-10$[/tex]
D. [tex][tex]$x=2$[/tex][/tex] and [tex]$x=-10$[/tex]

Answer :

Sure! Let's solve the equation [tex]\( 4|x+6| = 16 \)[/tex].

First, we need to isolate the absolute value term. We can do this by dividing both sides of the equation by 4:

[tex]\[ 4|x+6| = 16 \][/tex]
[tex]\[ |x+6| = \frac{16}{4} \][/tex]
[tex]\[ |x+6| = 4 \][/tex]

The absolute value equation [tex]\( |x+6| = 4 \)[/tex] means that [tex]\( x+6 \)[/tex] can be either 4 or -4. This gives us two separate equations to solve:

1. [tex]\( x+6 = 4 \)[/tex]
2. [tex]\( x+6 = -4 \)[/tex]

Let's solve each equation separately:

1. For [tex]\( x+6 = 4 \)[/tex]:
[tex]\[ x + 6 = 4 \][/tex]
Subtract 6 from both sides:
[tex]\[ x = 4 - 6 \][/tex]
[tex]\[ x = -2 \][/tex]

2. For [tex]\( x+6 = -4 \)[/tex]:
[tex]\[ x + 6 = -4 \][/tex]
Subtract 6 from both sides:
[tex]\[ x = -4 - 6 \][/tex]
[tex]\[ x = -10 \][/tex]

So, the solutions to the equation [tex]\( 4|x+6| = 16 \)[/tex] are [tex]\( x = -2 \)[/tex] and [tex]\( x = -10 \)[/tex].

Thus, the correct answer is:
C. [tex]\( x = -2 \)[/tex] and [tex]\( x = -10 \)[/tex]