High School

Solve [tex]|x+5|-6=7[/tex]

A. [tex]x=8[/tex] and [tex]x=-18[/tex]
B. [tex]x=-8[/tex] and [tex]x=18[/tex]
C. [tex]x=-8[/tex] and [tex]x=-18[/tex]
D. [tex]x=8[/tex] and [tex]x=-8[/tex]

Answer :

Sure, let's solve the equation [tex]\( |x + 5| - 6 = 7 \)[/tex].

### Step 1: Isolate the Absolute Value

First, we want to isolate the absolute value expression:

[tex]\[ |x + 5| - 6 = 7 \][/tex]

Add 6 to both sides:

[tex]\[ |x + 5| = 13 \][/tex]

### Step 2: Set Up Two Cases for the Absolute Value

The absolute value equation [tex]\( |x + 5| = 13 \)[/tex] can be split into two separate cases:

1. Positive Case: [tex]\( x + 5 = 13 \)[/tex]
2. Negative Case: [tex]\( x + 5 = -13 \)[/tex]

### Step 3: Solve Each Case

Positive Case:

[tex]\[ x + 5 = 13 \][/tex]

Subtract 5 from both sides:

[tex]\[ x = 13 - 5 \][/tex]

[tex]\[ x = 8 \][/tex]

Negative Case:

[tex]\[ x + 5 = -13 \][/tex]

Subtract 5 from both sides:

[tex]\[ x = -13 - 5 \][/tex]

[tex]\[ x = -18 \][/tex]

### Conclusion

The solutions to the equation [tex]\( |x + 5| - 6 = 7 \)[/tex] are [tex]\( x = 8 \)[/tex] and [tex]\( x = -18 \)[/tex].

So, the correct choice is:
A. [tex]\( x = 8 \)[/tex] and [tex]\( x = -18 \)[/tex]