High School

Solve [tex]|x+5|-6=7[/tex]

A. [tex]x=-8[/tex] and [tex]x=18[/tex]
B. [tex]x=-8[/tex] and [tex]x=-18[/tex]
C. [tex]x=8[/tex] and [tex]x=-8[/tex]
D. [tex]x=8[/tex] and [tex]x=-18[/tex]

Answer :

Sure! Let's solve the equation step by step:

1. Start with the given equation:
[tex]\[
|x + 5| - 6 = 7
\][/tex]

2. Isolate the absolute value expression:
Add 6 to both sides of the equation to eliminate the -6:
[tex]\[
|x + 5| = 7 + 6
\][/tex]
[tex]\[
|x + 5| = 13
\][/tex]

3. Set up two separate equations:
The absolute value equation [tex]\(|x + 5| = 13\)[/tex] means that the expression [tex]\(x + 5\)[/tex] can be either 13 or -13. This gives us two cases to solve:

Case 1:
[tex]\[
x + 5 = 13
\][/tex]

Case 2:
[tex]\[
x + 5 = -13
\][/tex]

4. Solve each equation for [tex]\(x\)[/tex]:

- For Case 1:
Subtract 5 from both sides:
[tex]\[
x = 13 - 5
\][/tex]
[tex]\[
x = 8
\][/tex]

- For Case 2:
Subtract 5 from both sides:
[tex]\[
x = -13 - 5
\][/tex]
[tex]\[
x = -18
\][/tex]

5. Write the solutions:
The solutions to the equation [tex]\(|x + 5| - 6 = 7\)[/tex] are [tex]\(x = 8\)[/tex] and [tex]\(x = -18\)[/tex].

So, the correct answer is:
- D. [tex]\(x = 8\)[/tex] and [tex]\(x = -18\)[/tex].