Answer :
We start with the two fractions:
[tex]$$
\frac{7}{12} \quad \text{and} \quad \frac{18}{12}.
$$[/tex]
Since they have the same denominator, we add the numerators directly:
[tex]$$
\frac{7}{12} + \frac{18}{12} = \frac{7+18}{12} = \frac{25}{12}.
$$[/tex]
Next, we convert the improper fraction [tex]$\frac{25}{12}$[/tex] into a mixed number. To do this, we divide the numerator by the denominator:
[tex]$$
25 \div 12 = 2 \text{ R } 1,
$$[/tex]
which means the integer part is [tex]$2$[/tex] and the remainder is [tex]$1$[/tex]. This gives us:
[tex]$$
\frac{25}{12} = 2\frac{1}{12}.
$$[/tex]
Thus, the sum of the fractions is
[tex]$$
\boxed{2\frac{1}{12}}.
$$[/tex]
[tex]$$
\frac{7}{12} \quad \text{and} \quad \frac{18}{12}.
$$[/tex]
Since they have the same denominator, we add the numerators directly:
[tex]$$
\frac{7}{12} + \frac{18}{12} = \frac{7+18}{12} = \frac{25}{12}.
$$[/tex]
Next, we convert the improper fraction [tex]$\frac{25}{12}$[/tex] into a mixed number. To do this, we divide the numerator by the denominator:
[tex]$$
25 \div 12 = 2 \text{ R } 1,
$$[/tex]
which means the integer part is [tex]$2$[/tex] and the remainder is [tex]$1$[/tex]. This gives us:
[tex]$$
\frac{25}{12} = 2\frac{1}{12}.
$$[/tex]
Thus, the sum of the fractions is
[tex]$$
\boxed{2\frac{1}{12}}.
$$[/tex]