High School

Which choice is equivalent to the expression below?

[tex]\sqrt{50} - \sqrt{2}[/tex]

A. [tex]24 \sqrt{2}[/tex]
B. 5
C. [tex]4 \sqrt{2}[/tex]
D. [tex]\sqrt{48}[/tex]

Answer :

To solve the expression [tex]\(\sqrt{50} - \sqrt{2}\)[/tex], we can simplify it step-by-step:

1. Simplify [tex]\(\sqrt{50}\)[/tex]:

- [tex]\(\sqrt{50}\)[/tex] can be expressed as [tex]\(\sqrt{25 \times 2}\)[/tex].
- This can be further broken down using the property of square roots: [tex]\(\sqrt{a \times b} = \sqrt{a} \cdot \sqrt{b}\)[/tex].
- So, [tex]\(\sqrt{50} = \sqrt{25} \cdot \sqrt{2} = 5 \cdot \sqrt{2}\)[/tex].

2. Simplify the whole expression:

- Now, we have [tex]\(5\sqrt{2} - \sqrt{2}\)[/tex].
- Both terms have [tex]\(\sqrt{2}\)[/tex], so we can combine the like terms.
- [tex]\(5\sqrt{2} - 1\sqrt{2} = (5 - 1)\sqrt{2} = 4\sqrt{2}\)[/tex].

Therefore, the expression [tex]\(\sqrt{50} - \sqrt{2}\)[/tex] simplifies to [tex]\(4\sqrt{2}\)[/tex], which matches choice C.