College

Which choice is equivalent to the expression below?

[tex]\sqrt{9x} - \sqrt{4x} + 4\sqrt{x}[/tex]

Answer :

To simplify the expression [tex]\(\sqrt{9x} - \sqrt{4x} + 4\sqrt{x}\)[/tex], follow these steps:

1. Simplify Individual Square Roots:

- [tex]\(\sqrt{9x} = \sqrt{9} \times \sqrt{x}\)[/tex].
Since [tex]\(\sqrt{9} = 3\)[/tex], it becomes [tex]\(3\sqrt{x}\)[/tex].

- [tex]\(\sqrt{4x} = \sqrt{4} \times \sqrt{x}\)[/tex].
Since [tex]\(\sqrt{4} = 2\)[/tex], it becomes [tex]\(2\sqrt{x}\)[/tex].

2. Rewrite the Expression:

Substitute the simplified terms back into the expression:

[tex]\[
\sqrt{9x} - \sqrt{4x} + 4\sqrt{x} = 3\sqrt{x} - 2\sqrt{x} + 4\sqrt{x}
\][/tex]

3. Combine Like Terms:

All the terms have [tex]\(\sqrt{x}\)[/tex], so you can combine them by adding or subtracting the coefficients:

- Coefficient of [tex]\(3\sqrt{x}\)[/tex] is 3
- Coefficient of [tex]\(-2\sqrt{x}\)[/tex] is -2
- Coefficient of [tex]\(4\sqrt{x}\)[/tex] is 4

Add the coefficients: [tex]\(3 - 2 + 4 = 5\)[/tex].

The expression becomes:

[tex]\[
5\sqrt{x}
\][/tex]

So, the expression [tex]\(\sqrt{9x} - \sqrt{4x} + 4\sqrt{x}\)[/tex] simplifies to [tex]\(5\sqrt{x}\)[/tex].