Answer :
Sure! Let's convert each fraction or mixed number to a percent. Here's how you can do it:
1. 15. [tex]\( \frac{3}{20} \)[/tex]:
- First, convert the fraction [tex]\( \frac{3}{20} \)[/tex] to a decimal. Divide 3 by 20: [tex]\( 3 ÷ 20 = 0.15 \)[/tex].
- Now, add this to 15: [tex]\( 15 + 0.15 = 15.15 \)[/tex].
- To convert to a percent, multiply by 100: [tex]\( 15.15 \times 100 = 1515\%\)[/tex].
2. 16. [tex]\( \frac{7}{10} \)[/tex]:
- Convert the fraction [tex]\( \frac{7}{10} \)[/tex] to a decimal. Divide 7 by 10: [tex]\( 7 ÷ 10 = 0.7 \)[/tex].
- Multiply by 100 to convert to a percent: [tex]\( 0.7 \times 100 = 70\%\)[/tex].
3. 18. [tex]\( \frac{9}{50} \)[/tex]:
- Convert the fraction [tex]\( \frac{9}{50} \)[/tex] to a decimal. Divide 9 by 50: [tex]\( 9 ÷ 50 = 0.18 \)[/tex].
- Multiply by 100 to convert to a percent: [tex]\( 0.18 \times 100 = 18\%\)[/tex].
4. 19. [tex]\( \frac{12}{25} \)[/tex]:
- Convert the fraction [tex]\( \frac{12}{25} \)[/tex] to a decimal. Divide 12 by 25: [tex]\( 12 ÷ 25 = 0.48 \)[/tex].
- Multiply by 100 to convert to a percent: [tex]\( 0.48 \times 100 = 48\%\)[/tex].
5. 20. [tex]\( 1 \frac{3}{5} \)[/tex]:
- Convert the mixed number to an improper fraction: [tex]\( 1 \frac{3}{5} = \frac{8}{5} \)[/tex].
- Convert [tex]\( \frac{8}{5} \)[/tex] to a decimal. Divide 8 by 5: [tex]\( 8 ÷ 5 = 1.6 \)[/tex].
- Multiply by 100 to convert to a percent: [tex]\( 1.6 \times 100 = 160\%\)[/tex].
I hope this step-by-step explanation helps you understand how to convert fractions and mixed numbers to percentages!
1. 15. [tex]\( \frac{3}{20} \)[/tex]:
- First, convert the fraction [tex]\( \frac{3}{20} \)[/tex] to a decimal. Divide 3 by 20: [tex]\( 3 ÷ 20 = 0.15 \)[/tex].
- Now, add this to 15: [tex]\( 15 + 0.15 = 15.15 \)[/tex].
- To convert to a percent, multiply by 100: [tex]\( 15.15 \times 100 = 1515\%\)[/tex].
2. 16. [tex]\( \frac{7}{10} \)[/tex]:
- Convert the fraction [tex]\( \frac{7}{10} \)[/tex] to a decimal. Divide 7 by 10: [tex]\( 7 ÷ 10 = 0.7 \)[/tex].
- Multiply by 100 to convert to a percent: [tex]\( 0.7 \times 100 = 70\%\)[/tex].
3. 18. [tex]\( \frac{9}{50} \)[/tex]:
- Convert the fraction [tex]\( \frac{9}{50} \)[/tex] to a decimal. Divide 9 by 50: [tex]\( 9 ÷ 50 = 0.18 \)[/tex].
- Multiply by 100 to convert to a percent: [tex]\( 0.18 \times 100 = 18\%\)[/tex].
4. 19. [tex]\( \frac{12}{25} \)[/tex]:
- Convert the fraction [tex]\( \frac{12}{25} \)[/tex] to a decimal. Divide 12 by 25: [tex]\( 12 ÷ 25 = 0.48 \)[/tex].
- Multiply by 100 to convert to a percent: [tex]\( 0.48 \times 100 = 48\%\)[/tex].
5. 20. [tex]\( 1 \frac{3}{5} \)[/tex]:
- Convert the mixed number to an improper fraction: [tex]\( 1 \frac{3}{5} = \frac{8}{5} \)[/tex].
- Convert [tex]\( \frac{8}{5} \)[/tex] to a decimal. Divide 8 by 5: [tex]\( 8 ÷ 5 = 1.6 \)[/tex].
- Multiply by 100 to convert to a percent: [tex]\( 1.6 \times 100 = 160\%\)[/tex].
I hope this step-by-step explanation helps you understand how to convert fractions and mixed numbers to percentages!