Answer :
To express [tex]$\frac{12}{25}$[/tex] as a percent using mental math, follow these steps:
1. Notice that the denominator [tex]$25$[/tex] can become [tex]$100$[/tex] by multiplying by [tex]$4$[/tex], because [tex]$25 \times 4 = 100$[/tex].
2. Multiply both the numerator and the denominator by [tex]$4$[/tex]:
[tex]$$\frac{12}{25} = \frac{12 \times 4}{25 \times 4} = \frac{48}{100}.$$[/tex]
3. Since [tex]$\frac{48}{100}$[/tex] means [tex]$48$[/tex] parts out of [tex]$100$[/tex], this is equivalent to [tex]$48\%$[/tex].
Thus, multiplying by [tex]$4$[/tex], we have:
- Multiply by: [tex]$4$[/tex]
- Fraction: [tex]$\frac{48}{100}$[/tex]
- Percent: [tex]$48\%$[/tex]
1. Notice that the denominator [tex]$25$[/tex] can become [tex]$100$[/tex] by multiplying by [tex]$4$[/tex], because [tex]$25 \times 4 = 100$[/tex].
2. Multiply both the numerator and the denominator by [tex]$4$[/tex]:
[tex]$$\frac{12}{25} = \frac{12 \times 4}{25 \times 4} = \frac{48}{100}.$$[/tex]
3. Since [tex]$\frac{48}{100}$[/tex] means [tex]$48$[/tex] parts out of [tex]$100$[/tex], this is equivalent to [tex]$48\%$[/tex].
Thus, multiplying by [tex]$4$[/tex], we have:
- Multiply by: [tex]$4$[/tex]
- Fraction: [tex]$\frac{48}{100}$[/tex]
- Percent: [tex]$48\%$[/tex]