High School

Express 3log_5(2) + log_5(7) as a single logarithm.

a) log_5(56)

b) log_5(14)

c) log_5(42)

d) log_5(\frac{8}{7})

Answer :

To express [tex]3\log_5(2) + \log_5(7)[/tex] as a single logarithm, we need to use the properties of logarithms.

Step 1: Use the power rule of logarithms.

The power rule states that [tex]a \cdot \log_b(x) = \log_b(x^a)[/tex].

Apply the power rule to [tex]3\log_5(2)[/tex]:

[tex]3\log_5(2) = \log_5(2^3)[/tex]

This simplifies to:

[tex]\log_5(2^3) = \log_5(8)[/tex]

Step 2: Use the product rule of logarithms.

The product rule states that [tex]\log_b(x) + \log_b(y) = \log_b(xy)[/tex].

Now, combine [tex]\log_5(8)[/tex] and [tex]\log_5(7)[/tex] using the product rule:

[tex]\log_5(8) + \log_5(7) = \log_5(8 \cdot 7)[/tex]

Step 3: Simplify the expression inside the logarithm:

[tex]8 \cdot 7 = 56[/tex]

So, we have:

[tex]\log_5(56)[/tex]

Thus, [tex]3\log_5(2) + \log_5(7)[/tex] expressed as a single logarithm is [tex]\log_5(56)[/tex].

Therefore, the answer is option a) [tex]\log_5(56)[/tex].