College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]$C(F) = \frac{5}{9}(F - 32)$[/tex]. What does [tex]$C(F)$[/tex] represent?

A. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

B. [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Fahrenheit when the input [tex]$C$[/tex] is in degrees Celsius.

C. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Fahrenheit when the input [tex]$F$[/tex] is in degrees Celsius.

D. [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Celsius when the input [tex]$C$[/tex] is in degrees Fahrenheit.

Answer :

To solve this problem, we need to understand what the function [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex] represents. The function is used to convert a temperature from degrees Fahrenheit to degrees Celsius.

Here's a breakdown of what each part represents:

1. Function Name and Notation:
- [tex]\( C(F) \)[/tex] is the notation used for the function. This means [tex]\( C \)[/tex] is the function name, and [tex]\( F \)[/tex] is the input to the function, which stands for the temperature in degrees Fahrenheit.

2. Mathematical Conversion:
- The formula [tex]\( \frac{5}{9}(F-32) \)[/tex] is the standard conversion formula used to convert a temperature from Fahrenheit to Celsius.
- In this formula:
- [tex]\( F \)[/tex] is the temperature in Fahrenheit.
- [tex]\( F - 32 \)[/tex] adjusts for the fact that 32°F is the freezing point of water in Fahrenheit.
- The fraction [tex]\( \frac{5}{9} \)[/tex] is a constant used to scale the result to Celsius.

3. Output Interpretation:
- The result [tex]\( C(F) \)[/tex] gives us the temperature in degrees Celsius after the conversion.

Based on this understanding, the correct interpretation of what [tex]\( C(F) \)[/tex] represents is:

- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.

This option correctly describes the purpose and output of the function.